The invention relates to sterling silver in general and hardened, corrosion resistant sterling silver in particular.
Sterling silver is, by definition, a silver alloy that comprises at least 92.5 percent silver, by weight. The remaining 7.5 percent of the alloy is often comprised of copper, but can be any variety of combinations of metals, resulting in sterlings with varied characteristics. However, one common characteristic of sterlings is that they are generally soft.
Sterlings commonly have a Vickers Scale hardness of about 65-75, “as cast.” Sterling pieces are often cast in gypsum molds. As soon as the mold has cooled enough for the investment to have solidified, the entire mold will be submerged in water, causing the mold to shatter, thereby releasing the cast piece. This will anneal the cast sterling, making it softer. Nonetheless, the inventor believes that such pieces will have an annealed hardness value close to 65-75 on the Vickers Scale, such that the as cast hardness and the annealed hardness will be comparable for many prior art sterlings. In any event, the term “as cast,” as used herein, is intended to encompass investment that is released from its mold by submerging the same into a water bath, while hot.
Depending upon the intended application, the relative softness of most sterlings may or may not be a drawback. However, in many jewelry applications, softness is a decided liability. Sterling silver is generally not used in the setting of precious stones because of the risk that the sterling may bend and the stone lost. Hinges, clasps, earring pins and chains are also typically not made of sterling because of its relative softness. Likewise, the softness of sterling can result in scratches in the finish of high wear items such as rings and bracelets.
Sterling silver can be buffed to a high shine. However, because of its softness, mechanical buffing can mar the finish of traditional sterlings.
Two common ways of increasing the hardness of many metals, including sterling silver, are work hardening and age hardening. Work hardening involves physically working the piece (i.e., bending it, rolling it, drawing it, etc.). Work hardening is generally not appropriate for most pieces that have been cast, as it would change the appearance of the pieces.
Age hardening involves heating the piece. It is suitable for use with cast pieces as they may be heated after casting is complete. However, age hardening has an obvious drawback in that it will increase the cost of manufacturing the piece.
An advantage of traditional sterlings is that they typically are capable of taking a highly lustrous white finish. However, a corresponding disadvantage is that traditional sterlings are quite susceptible to corrosion or tarnishing. Thus, to maintain the highly lustrous finish desired in most sterling pieces, frequent polishing is usually necessary, if the piece is used at all.
In view of the foregoing shortcomings in the prior art, an improved sterling silver alloy is desired meeting one or more of the following objectives.
It is an object of the invention to provide a sterling silver alloy that is substantially harder, as cast, than traditional sterling silver alloys.
It is a further object of the invention to provide a sterling silver alloy that has an as cast hardness on the Vicker's Scale of at least about 95.
It is a still further object of the invention to provide a sterling silver alloy that is sufficiently hard to be used as a setting for a stone.
It is yet another object of the invention to provide a sterling silver alloy that is sufficiently hard to be used as a clasp.
It is still another object of the invention to provide a sterling silver alloy that is sufficiently hard to be used as a hinge.
It is yet another object of the invention to provide a sterling silver alloy that is resistant to corrosion and tarnishing.
The invention comprises an improved sterling silver alloy. Like all sterlings, the improved alloy is at least 92.5 percent silver by weight. It has a reduced copper content compared to traditional sterlings: 2.8 to 3.0 percent versus the traditional 7.5 percent. In addition, the improved alloy includes about 2.75 percent palladium, about 1.0 percent tin, and about 0.75 percent zinc, all by weight. A grain refiner, such as ruthenium, may also be provided. When used, the ruthenium will make up about 0.005 percent, by weight, of the alloy. The components of the preferred alloy are preferably melted, degassed, remelted, and then formed into casting grains, wire, and etc. The improved alloy is significantly harder, as cast, than traditional sterlings: 95-120 Vickers versus 65 Vickers for traditional sterlings. The improved alloy also exhibits improved corrosion resistance. Other than a slightly higher (<200° F.) liquidus temperature, the improved alloy may be worked in substantially the same manner as traditional sterlings, though it may be put to more uses in view of the improved alloy's greater relative hardness. Pieces made from the preferred alloy may be age hardened if desired.
An improved sterling silver alloy is disclosed. The alloy is suitable for making jewelry pieces 1 such as rings 1A, earrings 1B, settings 1C, pendants 1D, chains 1E, cuff-links 1F, clasps 1G, bracelets 1H, as well as flatware 2, serving pieces 3, vases 4, and the like. It is particularly suited for use in pieces which require harder materials than is typically provided in traditional sterling. The alloy also offers superior corrosion resistance as compared to traditional sterling.
The preferred alloy is formed by combining silver (Ag), copper (Cu), palladium (Pd), tin (Sn), and zinc (Zn). Ruthenium (Ru) is preferably added as a grain refiner. The alloy is necessarily at least 92.5 percent silver (Ag), by weight, as it must be to qualify as sterling silver. Furthermore, because sterling articles sold in Europe must often be assayed to ensure that it is at least 92.5 percent silver, with failure of the assay resulting in exclusion of the article, it can be prudent to increase the silver content of sterling alloys slightly above the 92.5 percent floor. Thus, particularly for alloys intended to be sold in Europe, it may be preferable for the alloy to comprise at least 92.7 percent silver by weight.
Pure silver is too soft for most jewelry applications. Copper (Cu) is preferably provided to increase the hardness of the silver while maintaining ductility. The preferred copper concentration in the alloy is between about 2.0 and 3.7 percent by weight, most preferably 2.8 to 3.0 percent by weight. This can be contrasted with most traditional sterlings in which the copper concentration is closer to 6 or 7 percent by weight.
In classic sterling silver, copper makes up 7.5 percent of the alloy, by weight. However, copper is susceptible to tarnishing via the formation of sulphides. Pure silver can tarnish as well, but the presence of copper in traditional sterling silver makes most sterlings much more susceptible to tarnish.
In the preferred alloy, a substantial portion of the copper is replaced with palladium (Pd). Under normal atmospheric conditions, palladium is very resistant to corrosion. Thus, the presence of palladium in the alloy will help prevent tarnishing. Additionally, unlike copper, palladium has a color that is comparable to that of silver. Palladium is also harder than pure silver. The preferred palladium concentration in the alloy is between about 2.5 percent and about 3.3 percent, by weight, and most preferably about 2.75 percent, by weight.
Tin (Sn) is also added to the preferred alloy. Tin is added to increase the hardness of the alloy and also to inhibit corrosion. Tin preferably makes up between about 0.5 and about 1.25 percent of the alloy, by weight, and most preferably comprises about 1.0 percent, by weight.
Zinc (Zn) is preferably provided to increase the corrosion resistance of the alloy. Zinc will also help lower the melting point of the finished alloy. The preferred zinc concentration in the alloy is between about 0.50 and 1.25 percent by weight, most preferably about 0.75 percent by weight.
Ruthenium (Ru) may be added to the alloy as a grain refiner. This can help avoid the formation of large grains in the finished product, which can be unsightly in jewelry applications. When used, ruthenium preferably comprises up to about 0.01 percent and most preferably about 0.005 percent of the alloy, by weight. Additional ruthenium could be used if convenient; however, the ranges described above are expected to provide all needed grain refinement.
The alloy is preferably made by admixing shot of the components listed in and in the proportions provided in
The preferred alloy of the present invention will have a liquidus point of about 1790 degrees F. This compares to the liquidus of traditional sterling of about 1650 degrees F.
The preferred alloy of the present invention will have an as cast hardness between about 95 and 120 on the Vickers scale. Alloys of this hardness are suitable for use as stone settings, earring posts, hinges, laches, clasps, chain and wire. Pieces made with alloys of this hardness may also be polished mechanically without marring their finish.
The preferred alloy may be age hardened. This is preferably done by annealing the cast piece to about 1200 degrees F. The length of time to maintain the piece at the annealing temperature will vary depending upon the size of the piece, but for ring sized pieces, five to ten minutes has been found to be sufficient. The inventor typically age hardens in an inert atmosphere, such as argon or hydrogen (wherein the hydrogen acts as an oxygen scavenger); however, that is not believed to be necessary for this alloy because of its corrosion resistance. After heating for the requisite amount of time, the piece will be quenched in water upon removal from the oven. It will then be dried and returned to an oven where it is heated to 800 degrees F. for about thirty-five minutes, typically in atmospheric conditions. The piece will then be allowed to air cool to room temperature, and then buffed to restore the finish. Age hardening in this fashion will increase hardness to about 160 on the Vickers scale. In addition, the spring strength of the metal will be substantially enhanced. Age hardening will make the alloy more suitable for use as a watch pin, a clasp or other spring, and as a setting. The corrosion resistance of the alloy facilitates age hardening, in that the piece will not be as likely to tarnish, a particularly valuable characteristic when hardening takes place in a non-inert atmosphere. As compared to other age hardenable sterlings, less post-hardening work will be required to restore the finish of the piece.
The alloy of the present invention may be worked in substantially the same manner as traditional sterling. By way of example, once casting grains are formed, the grains may be melted in a crucible in the same manner as traditional sterling, though a slightly higher temperature must be reached to achieve liquidus. (at least 1790° F., and preferably 1850° F. to ensure a complete melt) The molten alloy may be poured into investment molds (typically gypsum). The mold will contain one or more cavities having the shape of the desired jewelry article, piece of flatware, etc. Once the investment has hardened, the entire mold may be submerged in water to shatter the mold and release the investment.
The investment should preferably be about 800 degrees F. before it is quenched. Delays of about fifteen minutes between pouring and quenching are usually sufficient. This is a relatively short delay, and a relatively high temperature for quenching, as compared to other commercially available corrosion resistant sterlings. These sterlings are prone to cracking if not allowed to cool for at least about thirty minutes. Although the present alloy is not as prone to cracking, it should be noted that immersion in water while the piece is still at about 800 degrees F. will anneal the alloy to some degree. Greater as cast hardness should be achievable by allowing the investment to cool longer prior to quenching.
Once quenched, the cast pieces may then be removed and polished—mechanically if desired—to yield a finished piece of jewelry 1, flatware 2, serving piece 3, vase 4, and etc. or a component of any of the foregoing. The finished piece may be age hardened, if desired.
The preferred alloy of the present invention is much less susceptible to tarnishing than traditional sterlings. It also compares favorably to other “tarnish resistant” sterlings currently available in the market, as the examples below illustrate.
Corrosion or tarnishing is largely a visual phenomenon. Silver that is tarnished has a strikingly different appearance than silver that is not tarnished. In an attempt to quantify the resistance of the present alloy to tarnishing, CIE LAB and Yellowness Index analyses were performed.
LAB is an approach to color that attempts to quantify how humans see color. It has three basic coordinates: L* which measures lightness; a* for green/red and b* for blue/yellow. To put the foregoing in context, white is 100 on the CIE LAB L* coordinate and black is zero. On the a* coordinate, a positive value indicates the presence of red and a negative value indicates the presence of green, where 100 equals pure red and −100 equals pure green. On the b* coordinate, a positive value indicates the presence of yellow and a negative value indicates blue, where 100 equals pure yellow and −100 equals pure blue. Generally speaking, a* and b* values relatively near zero are desirable if the metal is to appear white.
A few examples will provide further context: Pure silver has an L* value of about 96, an a* value of about −0.6 and a b* value of about 3.6. Traditional sterling (92.5% Ag, 7.5% Cu) has an L* value of about 94, an a* value of about −0.9, and a b* value of about 5.7.
Another test commonly used in jewelry is the Yellowness Index (YI). This index is commonly used with white gold. For example, alloys that have a YI score above 32 are not considered white gold. Although technically considered white gold, alloys not scoring about 19 or below will typically require some type of surface treatment, such as rhodium plating, to be used in jewelry. Silver alloys scoring above about 19 on the Yellowness Index will, likewise, be too yellow for many jewelry applications.
A method of making one or more jewelry articles is disclosed, the method comprising: placing casting grains of an alloy in a crucible, wherein the alloy comprises at least 92.5 percent, by weight, silver; about 3.0 percent, by weight, copper; about 2.75 percent, by weight, palladium; about 1.0 percent, by weight, tin; and completely melting the casting grains by heating said crucible to a temperature of at least about 1790 degrees F.; pouring the molten alloy into an investment mold containing one or more jewelry article shaped cavities; allowing the molten alloy to cool and solidify within the investment mold to form one or more jewelry articles; and removing the investment mold from the solidified one or more jewelry articles; and polishing the one or more jewelry articles. A jewelry article made according to the foregoing method has an as cast hardness of at least about 95 on the Vickers scale, specifically between about 95 and about 120 on the Vickers scale. A jewelry article made according to the foregoing method may be age hardened to about 160 on the Vickers scale.
Two substantially identical sprues or “trees” were formed of wax, each sprue containing five wax rings. Two investment molds were formed by pouring gypsum around each sprue and allowing the gypsum to harden. The molds were then heated to melt the wax and it was removed to leave to gypsum investment molds. Molten sterling having the formulation listed as the preferred embodiment in
The traditional sterling rings had an average L* value of 40.95 whereas the rings from the sprue made with the alloy of
Comparable results are expected to obtain in pieces worked with heat after casting. Subjecting traditional sterling silver to the heat of a torch will commonly cause tarnishing similar to that experienced in casting. A bench jeweler doing torch work on a piece made from the improved alloy can expect to do much less work to restore the finish of the piece as compared to the amount of work required to restore the finish on a comparable piece made of traditional sterling because of the improved alloy's ability to resist tarnishing. Likewise, for a jeweler age hardening a piece made of the preferred alloy versus a piece made of traditional sterling.
Tuccillo-Nielsen tarnish testing was conducted on the improved alloy as compared to traditional sterling silver (92.5% Ag, 7.5% Cu) and five commercially available corrosion resistant sterling alloys. The first, Argentium® 935 Original (Alloy A), a commercial alloy available from Argentium International, Ltd. of London (UK) was tested using a Fischer SDD x-ray fluorescence spectrometer and found to have the following composition: 92.7 percent Ag; 5.5 percent Cu; and 1.8 percent Ge. The second, STAGCG-D (Alloy B), a commercial alloy available from United Precious Metal Refining, Inc., of Alden, N.J. (US), was also tested using a Fischer SDD x-ray fluorescence spectrometer and found to have the following composition: 92.7 percent Ag; 2.44 percent Cu; 4.25 percent Zn; and 048. percent Sn. Additionally, trace components (less than 0.1 percent) of Indium (In), Silicon (Si) and Boron (B) were detected. The third, Silvadium®, (Alloy C), a commercial alloy available from United Precious Metal Refining, Inc. was also tested using a Fischer SDD x-ray fluorescence spectrometer and found to have the following composition: 93 percent Ag; 6 percent Pd; and 1.0 percent In. The fourth, Sterling Super™, (UPM STAGCSU, Alloy D), a commercial alloy available from United Precious Metal Refining, Inc. was also tested using a Fischer SDD x-ray fluorescence spectrometer and found to have the following composition: 92.5 percent Ag; 4.25 percent Cu; 2.25 percent Zn; 0.5 percent Pd; 0.25 percent Sn; and 0.25 percent In. The fifth, Elite Silver™, (950-3P, Alloy E), a commercial alloy available from ABI Precious Metals of Carson, Calif., was also tested using a Fischer SDD x-ray fluorescence spectrometer and found to have the following composition: 95 percent Ag; 1.8 percent Zn; 1.0 percent Pd; 0.75 percent In; 0.5 percent Gold (Au); 0.5 percent Cu; 0.25 percent Gallium (Ga); and 0.2 percent Sn. All percentages above are by weight. The improved alloy had the formulation listed as the preferred embodiment in
Circular blanks were formed from each alloy. They were polished and then initial CIE LAB and Yellowness Index (Y ID1925 C/2°) measurements were taken of all of the blanks. The blanks were then covered with a dry sheet of KimWipes® tissue (Kimberly-Clarke), an additive free tissue made from virgin wood pulp. Using a dropper, the sheet was wetted with a Tuccillo-Nielsen solution (10 percent NaCl, 10 percent acetic acid, balance deionized water, pH 2.12). A quantity of Tuccillo-Nielsen solution sufficient to saturate the KimWipes® sheet in the region immediately over each blank was provided. The saturated KimWipes® sheet was left in place for 24 hours, during which time it substantially dried. The dried KimWipes® sheet was then removed from the blanks, and a fresh KimWipes® sheet was placed over the blanks and the process described above was repeated four times. Measurements reported herein are those taken prior to exposure to the Tuccillo-Nelson solution and after 96 hours of exposure to the solution.
In addition, Vickers hardness was measured on pieces cast from all of the alloys considered. Identical pieces were cast in gypsum, allowed to cool for fifteen minutes and then quenched in ambient water. An “as cast” hardness was measured for each piece. The samples were placed into a metallurgical mount and polished with 180-800 grit silicon carbide paper to provide a uniform measuring surface. The polished samples were tested using the Suntech model M-400-H micro-hardness tester, equipped with a 136° diamond pyramid stylus. A 300 gram load was used.
Corrosion resistance and hardness results are provided in
Although the invention has been described in terms of its preferred embodiments, other embodiments will be apparent to those of skill in the art from a review of the foregoing. Those embodiments as well as the preferred embodiments are intended to be encompassed by the scope and spirit of the following claims.
This is a Continuation of U.S. patent application Ser. No. 13/224,116 filed on Sep. 1, 2011, which is hereby incorporated by reference, in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1590091 | Heusler | Jun 1926 | A |
1614752 | Mitchell | Jan 1927 | A |
1628673 | Leach | May 1927 | A |
1643304 | Korsunsky | Sep 1927 | A |
1720894 | Gray et al. | Jul 1929 | A |
1863612 | Assmann | Jun 1932 | A |
1863645 | Assmann | Jun 1932 | A |
1888188 | Tanabe | Nov 1932 | A |
1896410 | Leach | Feb 1933 | A |
1913423 | Wise | Jun 1933 | A |
1970318 | Kern | Aug 1934 | A |
1970319 | Kern | Aug 1934 | A |
1984225 | McFarland | Dec 1934 | A |
2031113 | Leach | Feb 1936 | A |
2052142 | Kern | Aug 1936 | A |
2052143 | Kern | Aug 1936 | A |
2196302 | Hensel et al. | Apr 1940 | A |
2196306 | Hensel et al. | Apr 1940 | A |
2196307 | Hensel et al. | Apr 1940 | A |
2221285 | Hensel et al. | Nov 1940 | A |
2719085 | Schatz | Sep 1955 | A |
2772156 | Primose | Nov 1956 | A |
3778259 | Viglione | Dec 1973 | A |
3811876 | Harigaya et al. | May 1974 | A |
4124380 | Youdelis | Nov 1978 | A |
4659378 | Volz et al. | Apr 1987 | A |
4775511 | Kono et al. | Oct 1988 | A |
4810308 | Eager | Mar 1989 | A |
4869757 | Eagar et al. | Sep 1989 | A |
4973446 | Bernhard et al. | Nov 1990 | A |
5037708 | Davitz | Aug 1991 | A |
5039479 | Bernhard et al. | Aug 1991 | A |
5171643 | Suzuki et al. | Dec 1992 | A |
5558833 | Zamojski | Sep 1996 | A |
5817195 | Davitz | Oct 1998 | A |
5882441 | Davitz | Mar 1999 | A |
5919320 | Agarwal et al. | Jul 1999 | A |
6139652 | Carrano et al. | Oct 2000 | A |
6168071 | Johns | Jan 2001 | B1 |
6406664 | Diamond | Jun 2002 | B1 |
6726877 | Eccles | Apr 2004 | B1 |
6841012 | Croce | Jan 2005 | B2 |
6860949 | Weber | Mar 2005 | B1 |
7118707 | Robinson | Oct 2006 | B2 |
7128792 | Menon | Oct 2006 | B2 |
7128871 | Davitz | Oct 2006 | B2 |
7198683 | Agarwal et al. | Apr 2007 | B2 |
8136370 | Bennett | Mar 2012 | B2 |
8771591 | Bennett | Jul 2014 | B1 |
9217190 | Butler | Dec 2015 | B2 |
20070251610 | Johns | Nov 2007 | A1 |
20080069722 | Johns | Mar 2008 | A1 |
20090205369 | Bennett | Aug 2009 | A1 |
20100263769 | Johns | Oct 2010 | A1 |
20140003992 | Fogel | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2255348 | Apr 1992 | GB |
2438198 | Nov 2007 | GB |
62-243725 | Oct 1987 | JP |
9514112 | May 1995 | WO |
9622400 | Jul 1996 | WO |
9803688 | Jan 1998 | WO |
Entry |
---|
Translation for JP 62-243725, Oct. 24, 1987. |
Translation for JPS62-243725, Oct. 24, 1987. |
Michael T. Roche and Frank E. Goodwin, Improved Tarnish Resistant Sterling Silver, Sep. 2003, Research Consortium, Durham, NC, USA. |
Pitwonka, Thomas S., “Molding Methods—Investment Casting”, 1998, Metals Handbook, 2nd Edition, ASM International, p. 1-13. |
Davis, et al, “Precious Metals and Alloys”, Metals Handbook Desk Edition, 1998, ASM International, p. 1-25. |
McDonald, A.S. & Sistare, G.H.; The Metallurgy of Some Carat Gold Jewellery Alloys; Gold Bulletin (1978); p. 69. |
Number | Date | Country | |
---|---|---|---|
Parent | 13224116 | Sep 2011 | US |
Child | 14945230 | US |