The invention relates to a stick, such as an ice hockey stick, which comprises a shaft and a blade part and in which the shaft and the blade part are separately manufactured and joinable together, an end of the shaft meant for the joint being tapered and the blade part comprising a socket arranged to receive said shaft end.
The history of evolution of ice hockey sticks knows at least two periods of replaceable blades. U.S. Pat. No. 3,638,942 discloses a plastic blade with a socket in its shaft area into which a traditional stick shaft is inserted. This stick was mainly for small boys and could be conveniently assembled using a wooden shaft and a plastic blade of a broken stick.
Later, when aluminium and composite shafts became more common, a replaceable blade, such as the one shown in
Current ice hockey sticks are commonly carbon fibre composite structure sticks. They are made either by manufacturing the shaft and the blade together, in one work phase, or the shaft is made separately and the blade is then fixedly fastened to the shaft before finishing of the product. In other words, the sticks are marketed as single, non-disassemblable pieces. A problem with current sticks arises e.g. when a plural number of shafts of different stiffness, at least 2 to 3 different stiffness classes, are needed due to different habits of the players. Moreover, players have personal preferences regarding blade shape and, naturally, stick handedness. Top brands have usually about ten different blade models commercially available. In addition, tailored blade designs are commonly made for professional hockey players.
The quality of service required by market demands leads to a logistics problem that is extremely difficult to manage because a standard product range of 3 shaft stiffness classes and 10 different blade models alone means a range of 30 different product titles, not to mention the service to pro-level players that may involve hundreds of different variations.
Today, ice hockey stick manufacturers usually have their production plants in remote countries of cheap labour, which further complicates the service to consumers and the retail trade and makes it more difficult.
An ice hockey stick according to invention has a shaft and a blade that are separately made products. The structure is designed so that the blade may be fastened to the shaft simply by instant glue. The fastening may either take place at the retailer's store or the player may do it. When both the shaft and the blade now have separate product names, the number of product titles in the above-mentioned standard product range drops from 30 to thirteen, which significantly reduces logistics costs and enables a marked improvement in quality of service. The stick according to the invention is characterised in that the socket in the blade part is formed entirely in the heel part of the blade part and thus the structure of the heel part and the socket end at the same level in the direction of the shaft.
In the following, the invention will be explained in closer detail with reference to the accompanying drawing, in which
Making the blade parts 1, 2 and the shafts 3 as separate pieces enables significant advantages to be gained also in the manufacturing process. Filament winding may be applied to the shafts 3 to enable a partly continuous manufacturing process and use of more economical raw material. In comparison with the manufacturing of one-piece sticks, separately made blade parts 1, 2 allow significantly more advantageous mould solutions to be obtained. Blade moulds for special sticks can be made of cast resins suitable for small series, which enables to further improve the service provided to an individual player.
In an embodiment of the invention, at least 75% of the socket length is arranged inside the heel part of the blade part 1, the rest of the socket, i.e. about 25 mm at the most, extending in the direction of the shaft 3.
In another embodiment of the invention, the blade part 1, 2 comprises a pre-fabricated socket 4 and a plastic core attached in association with it, with fibre laminate layers glued under pressure to their surfaces on both sides of the blade part 1, 2. The plastic core has a shape corresponding to the light-foam core shown in
In an embodiment, the blade 1, 2 comprises a socket 4 with thin walls and a core 6, together with a surface layer 7 formed around the socket 4 and the core. The socket 4 may be of a seamless reinforcing material, such as fibre reinforcement. The socket may be formed by means of at least one uniform, seamless braided layer of fibre reinforcement to be installed around a mandrel. The fibre reinforcement layer may be formed by means of a carbon fibre braid, for example, or by winding a uniform continuous carbon fibre band around the mandrel. The core 6 of the blade 1, 2 may be made of light foam, plastic, expanded thermo-plastic or cast resin lightened with microballoons. The formed core 6 of the blade 1, 2 and the socket 4 are joined together by coating them with at least one seamless layer of reinforcement fibre. The fibre reinforcement layer may be made in the same way as the fibre reinforcement layer of the socket. Next, the preform of the blade is placed into a mould, where it is impregnated with resin and cured under pressure and heat. The surface layer 7 of the blade 1, 2 may comprise reinforcing fibre, such as carbon fibre or a similar fibre reinforcement, and a bonding agent, such as epoxy resin. The seamless carbon fibre structure allows the socket 4 and the blade 1, 2 to be provided with maximum strength.
Number | Date | Country | Kind |
---|---|---|---|
U20150048 | Mar 2015 | FI | national |