The present disclosure is directed to a stick pack pouch or packaging that can be individually identified and tracked using an integrated circuit.
Stick packs, also called stickpacks, stick pack pouches, uni-sticks, and sachets, are long, flexible pouches used to hold a single-serving or single-dose amount of liquid and/or powder. Shaped like a traditional pack of gum, stick packs are sealed on their two short ends and have a single seal down the back. Stick packs are used to hold a variety of food-based compounds, including single-serve drink mixes, real and artificial sweeteners. Stick packs are also used to hold pharmaceutical agents for both adults and children, including in liquid or powder form. The convenient size and shape minimizes packaging and alleviates problems that can arise when users are forced to measure out a dose of a pharmaceutical agent. Rather than requiring a separate dispenser or measuring device, stick packs are quickly opened by the user and the proper dosage is immediately ready for consumption. The stick packs are often opened by ripping the packaging along a factory-scored perforation. However, these perforations are often inadequately or incorrectly scored, or can otherwise be difficult to open.
One of the challenges of administering a medication or other pharmaceutical is tracking whether and when the pharmaceutical was administered to the individual. For elderly individuals that live alone, for example, the timely and proper administration of medications is absolutely necessary. However, the elderly population often has the most difficult time tracking medications. For example, an individual can forget to take a medication, or can take the wrong medication. Further, an individual can take the wrong dosage of a medication. Additionally, an individual can forget that they already took a medication. It can also be difficult to administer and track medications and other pharmaceuticals in a clinical setting. While there are mechanisms and devices to facilitate pharmaceutical and medication tracking, these mechanisms and devices are expensive or onerous.
Accordingly, there is a continued need in the art for passive, easy to use devices that facilitate tracking of pharmaceutical use by an individual.
The present disclosure is directed to stick pack packaging and methods of manufacture. According to embodiments described or otherwise envisioned herein, the methods and systems are directed to a stick pack with an upper sealed edge, a lower sealed edge, and a longitudinal edge. The upper region has a notch and a horizontal perforation line parallel with the top edge, and a spout formed at least partially in the upper region but not extending past the upper sealed edge. The stick pack is configured to be folded along its longitudinal axis to fold the notch, and when the notch is folded a user can easily tear the top sealed edge along the horizontal perforation line to expose the spout. The stick pack includes one or more multilayer passive circuits within the laminate that can be detected by an external reader. An administration circuit is broken when the user exposes the spout, and can be utilized to determine whether a stick pack has been opened. An identity circuit can be utilized to determine the identity of a stick pack.
According to an aspect is a stick pack design. The stick pack includes: (i) a top sealed portion with a top edge, a horizontal notch parallel with the top edge and passing through the stick pack, and further having a horizontal perforation line parallel with the top edge; (ii) a bottom sealed edge; (iii) a longitudinal seal extending from the top sealed edge to the bottom edge; (iv) a spout formed at least partially in the top sealed portion but not extending past the top sealed edge; and (v) an integrated RLC circuit; (vi) the stick pack is configured to be folded along its longitudinal axis to fold the notch, such that only when the notch is folded can a user easily tear the top sealed edge along the horizontal perforation line to expose the spout.
According to an embodiment, the integrated RLC circuit comprises: a first layer comprising an inductor coil and a first plate of a capacitor of the RLC circuit; a second layer comprising a dielectric material for the capacitor; and a third layer comprising an inductor coil and a second plate of the capacitor. According to an embodiment, the second layer comprises an opening for electrical communication between the first layer and the second layer.
According to an embodiment, at least a portion of an inductor coil of the RLC circuit extends into the top sealed portion such that the portion of the inductor coil is removed when the user tears the top sealed edge along the horizontal perforation line to expose the spout.
According to an embodiment, the integrated RLC circuit is integrated into one or more internal layers of a laminate material.
According to an embodiment, the stick pack has a first integrated RLC circuit configured to identify the stick pack, and further comprising a second integrated RLC circuit configured to monitor whether the stick pack has been opened.
According to an embodiment, the horizontal perforation line can be intermittent.
According to an aspect is a system for identifying a stick pack. The system includes a stick pack with: (i) a top sealed portion comprising a top edge, a horizontal notch parallel with the top edge and passing through the stick pack, and further comprising a horizontal perforation line parallel with the top edge; (ii) a bottom sealed edge; (iii) a longitudinal seal extending from the top sealed edge to the bottom edge; (iv) a spout formed at least partially in the top sealed portion but not extending past the top sealed edge; and (v) an integrated RLC circuit configured to oscillate at a predetermined frequency. The system further includes a reader device configured to transmit electromagnetic waves at a variety of frequencies, and further configured to detect the predetermined frequency.
According to an embodiment, the system further includes a database comprising a plurality of predetermined frequencies, each predetermined frequency associated with an identity of a stick pack.
According to an aspect is a method for identifying a stick pack. The method includes the steps of: (i) providing a stick pack comprising a passive RCL circuit, where the passive circuit comprises an inductor coil and a capacitor, the RCL circuit oscillating in response to an electromagnetic wave having a predetermined frequency; (ii) transmitting, by an antenna of a reader device, electromagnetic waves of different frequencies; (iii) detecting, by the reader device, a frequency at which impedance of the reader device antenna increases; and (iv) determining, from a database, the identity of the stick pack based on the frequency at which impedance of the reader device antenna increases.
These and other aspects of the invention will be apparent from the embodiments described below.
The present invention will be more fully understood and appreciated by reading the Following Detailed description of the invention in conjunction with the accompanying drawings, in which:
The present disclosure describes various embodiments of stick pack packaging. The stick packs include one or more multilayer passive circuits within the laminate that can be detected by an external reader. An administration circuit is broken when the user exposes the spout, and can be utilized to determine whether a stick pack has been opened. An identity circuit can be utilized to determine the identity of a stick pack.
Referring now to the drawings, wherein like reference numerals indicate identical or corresponding parts throughout the several views, there is shown in
Stick pack 10 is sealed at three different regions to keep the contents within the closed packaging. The stick pack is sealed at the top region 24, at bottom region 26, and all along sealed edge 20, also called a fin. When the stick pack is filled with a predetermined amount of liquid or powder—shown by dashed fill line 30, although the amount can vary significantly from the shown amount—the contents and the top region seal 24 results in a headspace 28 which contains air or an inert gas. Headspace 28 also prevents spilling or loss of the contents during opening of the stick pack. Headspace 28 allows for resuspension of an oral suspension, such as when the user shakes the stick pack. The headspace also allows mixing or kneading of the stick pack for gels and solutions, including but not limited to thixotropic gels and solutions.
When the stick pack is filled with a predetermined amount of liquid or powder—shown by dashed fill line 30, although the amount can vary significantly from the shown amount—the contents and the top region seal 24 results in a headspace 28 which contains air or an inert gas. For some pharmaceutical products, for example, an inert gas can help prevent oxidation or degradation of the product. Inert gasses can include, for example, nitrogen and/or argon, among others.
According to an embodiment, the stick pack contains variable amounts of the contents. A stick pack containing a liquid or gel can comprise, for example, anywhere from 1 ml to 20 mls of liquid or gel, or more. For example, the size of the stick pack 10 can vary depending on the amount of liquid, gel, or powder intended to be stored inside the packaging. Accordingly, smaller stick packs may comprise less than 1 ml, while larger stick packs may comprise more than 20 mls. Common dosages are 2.5, 5, 10, and 20 mls, among many others.
Stick pack 10 can comprise a multi-step child-resistant opening mechanism that balances safety with ease of opening. To open the stick pack 10, a user first folds the stick pack 10 longitudinally along axis A-A, shown in
According to an embodiment, the scored perforation line 34 is created in the film prior to formation of the stick pack, or before sealing of any of the edges. The perforation line 34 can be formed, for example, by laser ablation of only the outermost layer of the stick pack, by mechanical knife, or by other methods. According to an embodiment, therefore, perforation line 34 is formed by laser ablation of an outermost aluminum layer of a multi-layer film laminate. A laser-scored perforation line 34 allows for thicker films for the stick pack 10 without significantly increasing the force required to tear along the perforation and open the stick pack. Additionally, according to an embodiment the perforation is formed along both sides of fin 20, which allows the user to easily rip through the fin when opening the stick pack.
Referring to
Stick pack 10 can be made of any suitable material, and can comprise one or a plurality of layers. For example, the innermost layer of the stick pack is preferably made of a material that does not interact with the contents of the stick pack, and does not absorb or otherwise let the contents stick to or diffuse through the material. Examples of suitable layer materials include paper, aluminum, polyethylene (PE), and polyethylene terephthalate (PET), among many others. According to one embodiment, the outermost layer of the stick pack is a paper or aluminum layer upon which logos, instructions, and other labeling materials can be printed. The next layer may be a PET layer, and the innermost layer may be a PE layer. Accordingly, the layers may be aluminum/adhesive/PET/adhesive/PE, in one embodiment.
Referring to
According to an embodiment, the passive circuit or circuits can be applied to the film or layers of the stick pack using a conductive and/or insulating ink, which can be pre-printed onto a stick pack prior to filling and sealing. Alternatively, the layers of the stick pack can be patterned to create a stacked passive circuit design. The circuit is preferably not applied, however, to the inside of the innermost layer of the stick pack, in order to avoid contact with the contents of the stick pack.
As shown in
According to an embodiment, the circuit depicted in
Referring to
Indeed, one of the features of an RLC circuit is that there is a resonance frequency ω0 at which the circuit will resonate, or oscillate. The resonance frequency of an RLC circuit can be expressed as:
ω0=1/√{square root over (LC)} (Eq. 1)
As the drive coil of an external reader transmits an electromagnetic wave with a range of frequencies, the transmitted frequency will eventually be equal to the resonance frequency of the RLC circuit in the stick pack. At that frequency, the drive coil in the external reader and the inductor coil in the stick pack circuit will inductively couple and the impedance to the current through the drive coil of the external reader will increase. The external reader detects this increase and records the frequency at which it happens. This frequency is associated in a database with a specific individual stick pack, or with a stick pack type.
According to an embodiment, the external reader 70 can be an at-home device, a cell phone, or a portable stick pack carrying case or container, among other devices. For example, the device's reader circuit would communicate with the patient's or the care taker's cell phone via a Bluetooth link. Each stick pack can be recorded to insure that the proper medication was administered, that the medication was dosed at the correct time, and/or that the stick pack was squeezed to remove the contents. According to an embodiment, the system can be portable.
Referring to
Referring to
For the administration circuit, Layer 1 comprises a bottom inductor coil 52, the bottom plate of the capacitor 54, and the resistor within the trace length. Layer 2 comprises an insulating layer 56 that provides electrical insulation between the conductor traces between Layer 1 and Layer 3, as well as providing the dielectric material for the capacitor. Layer 3 provides the top inductor coil 58, the top plate of the capacitor 60, and the resistor within the trace length. There is an electrical connection between an electrode 62 of Layer 1 and an electrode 64 of Layer 3 via a hole 66 in the insulating Layer 2. The coil 52 of Layer 1 comprises a loop 68 which extends into the spout area such that when the stick pack is opened as described herein, the coil will be torn and the circuit will be broken. Accordingly, the circuit will no longer oscillate when activated.
For the identity circuit, Layer 1 comprises a bottom inductor coil 72, the bottom plate of the capacitor 74, and the resistor within the trace length. Layer 2 comprises the insulating layer 56 that provides electrical insulation between the conductor traces between Layer 1 and Layer 3, as well as providing the dielectric material for the capacitor. Layer 3 provides the top inductor coil 78, the top plate of the capacitor 80, and the resistor within the trace length. There is an electrical connection between an electrode 62 of Layer 1 and an electrode 64 of Layer 3 via a hole 86 in the insulating Layer 2.
Referring to
According to an embodiment, stick packs can be sold or stored in a carton or container of multiple stick packs. Each of the stick packs within a carton or container of multiple stick packs will have a unique oscillating frequency to identify the stick pack. Each of the cartons for multiple individual stick packs can have a unique identity circuit with a unique oscillating frequency that identifies each of the individual stick packs within that carton. Each stick pack can also have an administration circuit, each having an oscillating frequency that operates at a frequency different from all of the identity circuits. The administration circuit has a conductor trace that protrudes into the spout area, so that once the stick pack is opened (a tear created in the spout area) the circuit trace is broken and the administration circuit no longer oscillates. Accordingly, the administration circuit is utilized to determine when and/or if the stick pack is administered to the patient. However, the identity circuit will still be operational after administering the medication. With the identity circuit still operational and the administration circuit no longer oscillating, the external reader will record the date and time the medication was taken. Since the identity circuit is still operational even after the medication is taken, the empty disposed stick pack found at the location where dispensed/consumed can be traced back to its original source where dispensed, such as the pharmacy/hospital/home, and the manufacturer can be identified.
According to an embodiment, stick pack 10 can comprise one or more other security features. For example, stick packs can be serialized for tracking and identification. Serializing can comprise, for example, labeling with a unique bar code, QR code, or other code that allows for specific identification of the stick pack. All stick packs can be serialized with a similar code format, while some stick packs may be labeled with a specific code format for an individual manufacturer, date, and/or content. As another security feature, the stick pack can be labeled using a specialty or anti-counterfeiting ink. One or more security features allow for increased tracking and identification of pharmaceuticals. For example, a stick pack sold illegally to another individual can be tracked back to the manufacturer, seller, and/or intended user of the stick pack. Using the bar code, QR code, or other unique code. As another example, suspect stick pack can be authenticated by examining the presence or authenticity of anti-counterfeiting ink or other anti-counterfeiting feature.
Referring to
At step 220, an external reader device 70 transmits electromagnetic waves at different frequencies. The external reader device can be any of the devices described or otherwise envisioned herein. For example, the external reader device can comprise a drive coil for transmitting electromagnetic waves. The external reader device can be a stand-alone device, or can be integral with a container, carton, or other storage device. The external reader device can alternatively be associated with a room, storage area, an appliance, or other space. The external reader device can, for example, transmit electromagnetic waves at a wide range of different frequencies to include any possible resonance frequencies. In a system with 100 different possible frequencies at which the stick packs will resonate, the external reader device will test one or more of those possible frequencies.
At step 230, the external reader device detects a change in the impedance of the antenna (drive coil), which means that the drive coil oscillator frequency transmitted by the external reader is equal to the stick pack circuit's inherent oscillating frequency. The coils have inductively coupled and the impedance to the current through the external reader drive coil (antenna) increased. The device notes the frequency at which the impedance changes.
At step 240, the external reader device or a device or computer in communication with the external reader device identifies the stick pack based on the detected frequency. In one embodiment, for example, the external reader device is in wired or wireless communication with another device or with a computer or server, and transmits the detected frequency information to the other device at step 235. The external reader device or other device can identify the stick pack based on the detected frequency by, for example, querying a database of stick packs and associated frequencies.
At optional step 250, the external reader device or a device or computer in communication with the external reader device determines whether the stick pack has been opened based on the detected frequency. For example, at step 240 the stick pack is identified, and based on that identification, there should be a second frequency at which the administration circuit of the stick pack will resonate. If the external reader device fails to detect an impedance change at the frequency of the administration circuit, but the stick pack is present based on an impedance change at the frequency of the identity circuit of the stick pack, then the system concludes that the administration circuit has been disrupted by opening of the stick pack.
While various embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, embodiments may be practiced otherwise than as specifically described and claimed. Embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/259,800, filed on Nov. 25, 2015 and entitled “Stick Pack Packing With Integrated Circuit”, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62259800 | Nov 2015 | US |