The present disclosure relates, in general to construction elements for use in partitions and ceiling structures of buildings, and more specifically to construction elements provided with stiffeners for improving stiffness, partition height and crack resistance of partitions and ceiling systems; and a drywall stud and ceiling section provided therewith.
Wall constructions, for example, drywall partitions are typically constructed from a series of spaced apart studs arranged between floor and ceiling channels and drywall surface material such as gypsum boards secured to the surfaces of the studs. Generally, these studs are non-load bearing and allow for rapid construction. Conventional metal studs used in non-load bearing applications, however, are not as structurally stable to carry horizontal loads due to wind and other forces along the stud length. Therefore, it is known to arrange reinforcement structures at the points where building components such as boards or frames are joined with the studs. Such reinforcement structures are generally U-shaped and are mounted within the stud or as bridging members that extend between the series of stud members.
Referring to U.S. Pat. No. 3,624,694 discloses a reinforced stud construction used in partitions of buildings. Referring to European publication number 0,096,675 discloses an arrangement in a wall stud that provides for a reinforcing insertion structure. Yet another U.S. Pat. No. 3,425,159 describes a snap-fit reinforcement member for use with a door closing or other operating devices. Similarly, referring to U.S. Pat. Nos. 7,836,657; 7,559,519 and 6,164,028 all describe reinforcement members that are arranged as bridging members between corresponding studs.
The constructions described above in the referenced patent documents have certain disadvantages even in the presence of the reinforcement members. The reinforcement members are generally U-shaped profiles attached to web of the studs. This involves additional cost for material as well as work in order to join the studs with the reinforcement member. Secondly placing these reinforcement members is tedious and time consuming, especially if the reinforcing members are adequately fixed to the studs. Thirdly these reinforcement members are not designed to be installed in a practical and economical way. Lastly none of the cited prior art provide a solution that could be adapted for constructing both an interior partition as well as a ceiling system.
Therefore, notwithstanding all the past improvements made in order to improve the structural stability and durability of studs used in drywall constructions, there is still scope for improved designs for obtaining stiffer partitions and ceiling systems; provide backings for flanges of channels to allow for screwing or nailing without bending the flanges; provide simple and inexpensive stiffeners that prevent individual studs from twisting and/or buckling under load and reduce cracks in the ceiling systems (provided, the cracks are a result of irregular installation procedures). Further, achieving all the above parameters without increasing complexity of stiffener manufacture, installation and transport are integral.
The present disclosure achieves all the above technicalities by providing a stiffener that has an optimized design structure that increases the stiffness of the partition and ceiling system by exhibiting 50% less deflection levels compared to conventional drywall constructions. Further the stiffeners of the present disclosure do not increase material cost by having a thickness equivalent to the reduced thickness of the partition stud and the ceiling sections arranged therewith. Furthermore, the stiffener design carry flexibility to be made by the various methods outlined in the disclosure and allows for easy and effective transportation of the studs and ceiling sections fixed with these stiffeners. Alternatively, the simple design of the stiffeners is compatible for on-site fixing of the stiffener with the studs and ceiling sections.
In one aspect of the present disclosure, a stiffener for a construction element for providing resistance against deflection and cracking is disclosed. The stiffener comprises of a U-shaped cross-section with a web and two flanges extending transversely from the web at an angle X more than or equal to 90 degrees and one or more ribs rising from each of the flanges and extending towards each other. The stiffener is configured to be fixed within the construction element.
In another aspect of the present disclosure, a drywall stud fitted with one or more stiffener is disclosed. The web and flanges of the stiffener abuts the web and flanges of the drywall stud.
In one another aspect of the present disclosure, a ceiling section fitted with one or more stiffener is disclosed. The web and flanges of the stiffener abuts the web and flanges of the ceiling section.
In yet another aspect of the present disclosure, a drywall partition system which provides structural integrity to resist destructive forces is disclosed comprising a plurality of vertical drywall studs fitted with a plurality of stiffeners at desired intervals and retained between a floor channel and a ceiling channel.
In still another aspect of the present disclosure, a suspended ceiling system which provides structural integrity to resist destructive forces is disclosed comprising a grid suspended from a structural ceiling having intermediate beams interlocked with ceiling sections fitted with a plurality of stiffeners at desired intervals.
Embodiments are illustrated by way of example and are not limited in the accompanying figures.
Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the disclosure.
Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or the like parts. Embodiments disclosed herein are related to a stiffener for drywall studs and ceiling sections that improves deflection, partition height and crack resistance of the partition and ceiling system accordingly.
The stiffener 50 is configured to be fixed within the drywall stud, spaced along the length of the drywall stud as desired to provide stiffening for the flanges 20a, 20b. The stiffener 50 backs the flanges 131a, 131b of a drywall stud 100 to hold them in place when screws are driven into the flanges 20a, 20b for fastening drywall panels to the flanges 131a, 131b in order to form a wall structure as will be described later. If not for these stiffeners, the flanges of the drywall stud may bend inwardly during screwing and may not provide for the penetration of the screws through the flanges thereby impairing the fastening procedure. Such bending of the flanges is prevented by providing stiffeners along the length of the drywall stud to hold the flanges in place for screwing.
Therefore, additional strength and stiffness are imparted to the drywall studs by providing stiffener 50 of the present disclosure which in turn result in structural stability to the drywall structures constructed therefrom. Although stiffeners similar to the U-shaped structure shown in
The ribs 30 of the stiffener 50 can be designed to be at various angles from the flanges 20a, 20b. In the embodiment shown in
In one embodiment of the present disclosure, the ribs 30 have a length L less than the length L′ of the web 10. In an example embodiment, the length of the ribs 30 is 2 mm. This is of particular relevance because the drywall studs fitted with the stiffeners 50 of the present disclosure could still be transported by arranging one drywall stud atop another as illustrated in
The stiffener 50 is made of a material selected from aluminum or mild steel coated with galvanized iron (GI). The thickness of the stiffener 50 ranges between 0.4 mm and 2 mm. In a particular embodiment, the thickness of the stiffener 50 is 1 mm. The base metal thickness of a drywall stud desired to be fixed with the stiffener 50 of the present disclosure could have a reduced base metal thickness compared to conventional drywall studs. This drywall stud even with reduced base metal thickness when fitted with the stiffeners 50 of the present disclosure imparts improved stiffness and performance to the wall system construction therefrom. By means of this the additional material cost incurred for the stiffener making is controlled because the reduced thickness of the base metal compensates for the material cost incurred for the stiffeners.
In an optional embodiment of the present disclosure, ribs 30′ could be provided on the web 10 of the stiffener 50 as illustrated in
The stiffener 50 of the present disclosure can also be fitted within a drywall stud 100 that do not have edge portions 132a, 132b. In the embodiment illustrated in
The dimension of the stiffener 50′ is adjusted such that it is snap fitted into the ceiling section 200 and retained in position to absorb forces required for driving screws in the web 230 of the ceiling section 200 during fastening of the drywall panels. Conventionally, gypsum panels are used for this purpose. Gypsum panels are usually secured to the web 230 of the ceiling section 200 by means of screwing. The stiffener ribs 30′ make the flanges 20a′, 20b′ and web 10′ of the stiffener 50′ very stiff in compression and therefore provide solid backing to the web 230 of the ceiling section 200 during screwing. In addition to this, the stiffener 50′ also reduces crack formation in ceiling constructions, particularly crack formations occurring due to irregularity in the installations.
In one embodiment of the present disclosure, as illustrated in
Multiple stiffeners 50′ can be fixed within a ceiling section 200 depending on the positions of the ceiling section where screwing would occur. In an example embodiment, stiffeners 50′ are fixed in a ceiling section at every 2 feet interval. Conventionally, ceiling sections are transported by stacking ceiling sections one over the other. Owing to which, in the most preferred embodiment of the present disclosure, the stiffeners 50′ are fixed within the ceiling section 200 at the installation site. Nevertheless, the stiffeners 50′ could also be fixed within the ceiling sections 200 at the manufacturing site before transportation by riveting or lancing.
It is to be understood that the present disclosure is not limited in its application to the details of the construction and arrangement of the parts illustrated in the accompanying figures, since the present disclosure is capable of being implemented in varied number of embodiments and practiced in various ways. Further the terminology employed herein is for the purposes of description and teaching of the present disclosure and do not in any sense limit the scope of the present disclosure.
All variations illustrated for the drywall stiffener 50 should be understood to be applicable for ceiling stiffener 50′ of the present disclosure. While the drywall stiffener 50 illustrated in
The drywall studs 100 are fixed with a plurality of stiffener 50 of the present disclosure at positions that necessitate screwing on the drywall studs 100 in order for the gypsum panels 330a, 330b to be fastened on either sides of the drywall studs 100. The stiffeners 50 can be fixed within the drywall stud 100 in a variety of ways such as but not limiting to riveting or lancing. Thus, when the screws are driven into the flanges 131a, 131b to fasten the gypsum panels 330a and 330b to the flanges 131a, 131b the stiffener 50 prevents the flanges 131a, 131b from bending and allows the screws to penetrate relatively easily through the flanges 131a, 131b. Likewise, the stiffener 50 holds the flanges 131a, 131b in place if nails are pounded into the flanges 131a, 131b rather than screws being driven into the flanges 131a, 131b. The stiffeners 50 also give additional structural strength to the drywall studs 100 for general structural strength.
The additional structural strength provided by the stiffeners 50 of the present disclosure support higher partition heights which otherwise would not be possible. Conventionally the drywall partitions made of 48 mm drywall studs are constructed to standard height of 2.5 meters. With the stiffeners 50 of the present disclosure in place, the height achieved by a drywall partition made of 48 mm drywall studs can be increased to 3.3 meters. This is made possible by the stiffness and reinforcement provided by the stiffeners 50 of the present disclosure.
As illustrated, the ceiling sections 200 are provided with multiple ceiling stiffeners 50 within them. In the embodiment shown in
If no stiffeners 50′ are provided inside the ceiling sections 200, the point 450 may cause the ceiling section 200 at that location to crumble leading to the sagging of the suspended ceiling 400 eventually resulting in the ceiling cracking over a period of time. Such crumbling issues are also true for other ceiling sections 200 present adjacent to the point 450. The development of cracks in the suspended ceiling 400 is reduced in accordance with the present disclosure by providing stiffeners 50′ inside the ceiling sections 200 which backs the web 230 of the ceiling sections 200 to hold them in place when the screws are driven into them, thus assuring the screws penetrate the web 230 and further restrict the flanges 231a, 231b of the ceiling sections 200 from crumbling or buckling over a period of time.
A drywall partition was constructed by erecting 48 mm drywall studs having a thickness of 0.4 mm provided with 3.8 mm drywall stiffeners 50 of the present disclosure between a conventional floor channel and a ceiling channel. The 48 mm drywall studs were provided with two stiffeners 50 one attached to the top end of the drywall stud and the other attached to the bottom end of the drywall studs. Deflection of the drywall partition having stiffeners were measured by simulation and compared with the deflection exhibited by a drywall partition having no stiffeners when applied with a load of 200 Pa.
While the conventional drywall partition (with no stiffeners) recorded a maximum deflection of 7.74 mm at 200 Pa, the drywall partition constructed from drywall studs provided with stiffeners of the present disclosure recorded a maximum deflection of 3.81 mm at 200 Pa. Thus the deflection of the drywall partition comprising stiffeners was found to be improved by almost 50%. This is because the ribs of the stiffeners resist the deflection of the flanges through uniform distribution of load. Further the 50% improvement in the stiffness, stability and structural strength of the partition system with stiffeners enable higher partition heights.
A suspended ceiling was constructed by erecting ceiling sections provided with 3.8 mm ceiling stiffeners 50′ of the present disclosure to perpendicularly placed intermediate channels hung from a structural ceiling. The ceiling sections were provided with two ceiling stiffeners 50′ each, one at each edge of the ceiling section. Deflection of the suspended ceiling system having stiffeners were measure by simulation and compared with the deflection exhibited by a conventional suspended ceiling system when applied with a load ranging between 50-75 N.
While the conventional suspended ceiling (with no stiffeners) recorded a maximum deflection of 0.65 mm at 75 N, the suspended ceiling system constructed from ceiling sections provided with ceiling stiffeners of the present disclosure recorded a maximum deflection of 0.0046 mm Thus the stiffness of suspended ceiling system was found to be largely improved by the ceiling stiffeners of the present disclosure, which can be attributed to the ribs present in the ceiling stiffeners that resist the bending od the ceiling sections during flexural load.
A 1800 mm cross 1200 mm suspended ceiling complete with gypsum panels of size 1800 mm×1200 mm was constructed by erecting ceiling sections provided with 3.8 mm ceiling stiffeners 50′ of the present disclosure to perpendicularly placed intermediate channels hung from a structural ceiling spanning to 1700 mm. The ceiling sections were provided with three ceiling stiffeners 50′ each, one at each edge of the ceiling section and another stiffener positioned centrally. 30 kg of total weight by applying 10 kg across each of the ceiling section provided with stiffener was applied on the system from the top and deflection cause by the load was measured from the bottom using a dial gauge.
An exactly similar suspended ceiling system was constructed without the stiffeners of the present disclosure and was applied with 30 kg of load from top and deflection measured from the bottom. While the suspended ceiling system provided with the stiffener was found to deflect 15.1 mm the ceiling system without the stiffener was found to deflect 26.5 mm thus demonstrating a reduced deflection of almost 43%.
With use and implementation of the stiffeners of the present disclosure, channels such as drywall studs and ceiling sections with improved stiffness can be obtained without complicating the stud construction. The stiffness of the channels is improved by the backing provided by the stiffeners to the flanges of the drywall studs and ceiling sections that allow screws or nails to be driven into the flanges without bending the flanges. The present disclosure provides a stiffener that can be easily inserted into the channels by simple means and one that holds itself in place. The present disclosure provides reinforced stud constructions utilizing stiffeners that can be fabricated easily and economically from sheet stock. The stiffeners resist crumbling/buckling of the suspended ceiling systems thereby delaying and reducing development of cracks.
The present disclosure also pays attention to the transport of the channels fabricated with stiffeners by designing stiffeners that make no change to the conventional means of transporting channels. Further the stiffener designs provide flexibility of them being produced by multiple methods such as dye casting, embossing and cold-working. Furthermore, the stiffener design compensates the additional cost of material involved in producing them by enabling the use of channels having reduced thickness. Moreover, the stiffener pieces are made from simple construction that fits complementarily within the channels along with which they co-act.
Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the order in which activities are listed is not necessarily the order in which they are performed.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.
The specification and illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The specification and illustrations are not intended to serve as an exhaustive and comprehensive description of all of the elements and features of apparatus and systems that use the structures or methods described herein. Certain features, that are for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in a sub combination. Further, reference to values stated in ranges includes each and every value within that range. Many other embodiments may be apparent to skilled artisans only after reading this specification. Other embodiments may be used and derived from the disclosure, such that a structural substitution, logical substitution, or another change may be made without departing from the scope of the disclosure. Accordingly, the disclosure is to be regarded as illustrative rather than restrictive.
The description in combination with the figures is provided to assist in understanding the teachings disclosed herein, is provided to assist in describing the teachings, and should not be interpreted as a limitation on the scope or applicability of the teachings. However, other teachings can certainly be used in this application.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Also, the use of “a” or “an” is employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the disclosure. This description should be read to include one or at least one and the singular also includes the plural, or vice versa, unless it is clear that it is meant otherwise. For example, when a single item is described herein, more than one item may be used in place of a single item. Similarly, where more than one item is described herein, a single item may be substituted for that more than one item.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The materials, methods, and examples are illustrative only and not intended to be limiting. To the extent that certain details regarding specific materials and processing acts are not described, such details may include conventional approaches, which may be found in reference books and other sources within the manufacturing arts.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
201941016268 | Apr 2019 | IN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IN2020/050369 | 4/20/2020 | WO |