This application claims priority of Taiwanese Application No. 103112681, filed on Apr. 7, 2014.
The disclosure relates to a negative air ion producing device, and more particularly to a plant-based negative air ion producing device.
The concentration of negative air ions (NAI) is an important index for evaluating air quality. Therefore, purely electrical NAI generators have been developed for indoor air purification. The NAI generated by such devices are different from plant-sourced NAI, which may be more beneficial to health. However, under an ordinary environment, the ability of a plant to release NAI is too weak to achieve a satisfactory NAI concentration.
Therefore, an object of the disclosure is to provide a stimulating device for enhancing release of negative air ions by a plant.
According to one aspect of the disclosure, the stimulating device includes a housing, a plant pot, first and second conductive terminals and a negative voltage pulse module. The housing includes a first surrounding wall that defines an inner chamber. The plant pot is disposed in the inner chamber, and is configured to receive a culture medium for cultivating the plant. The first conductive terminal passes through the plant pot for contact with the culture medium. The second conductive terminal is spaced apart from the first conductive terminal, is disposed on one of the housing and the plant pot, and is to be non-contact with the culture medium when the culture medium is placed in the plant pot. The negative voltage pulse module is disposed on the housing, includes a first electrode electrically coupled to the first conductive terminal, and a second electrode electrically coupled to the second conductive terminal, and is configured to output a negative voltage pulse at the first electrode so as to stimulating the plant via the culture medium for enhancing release of the negative air ions thereby.
Another object of the disclosure is to provide a plant-based negative air ion producing device.
According to another aspect of the disclosure, the plant-based negative air ion producing device includes a housing, a plant pot, a culture medium, a plant, first and second conductive terminals and a negative voltage pulse module. The housing includes a first surrounding wall that defines an inner chamber. The plant pot is disposed in the inner chamber. The culture medium is disposed in the plant pot. The plant is cultivated in the culture medium and releases negative air ions. The first conductive terminal passes through the plant pot for contact with the culture medium. The second conductive terminal is spaced apart from the first conductive terminal, is disposed on one of the housing and the plant pot, and is to be non-contact with the culture medium. The negative voltage pulse module is disposed on the housing, includes a first electrode electrically coupled to the first conductive terminal, and a second electrode electrically coupled to the second conductive terminal, and is configured to output a negative voltage pulse at the first electrode so as to stimulating the plant via the culture medium for enhancing release of the negative air ions thereby.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the disclosure is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
Referring to
Referring to
Further referring to
Referring to
Referring to
The boost converter (T) of the voltage pulse generating circuit 34 includes a primary-side coil (N1) and a secondary-side coil (N2). The primary-side coil (N1) has a first terminal electrically coupled to the driving circuit 33 for receiving the driving signal therefrom, and a second terminal electrically coupled to a direct current voltage source 342 via a resettable fuse 341. When overcurrent occurs in the primary-side coil (N1), a resulted high temperature may cause the resettable fuse 341 to enter a non-conductive/electrically-isolating state, thereby protecting circuits from damage due to the overcurrent. Upon termination of the overcurrent and when the temperature becomes lower, the resettable fuse 341 may return to a conductive state. The secondary-side coil (N2) has a first terminal electrically coupled to the first electrode 301, and a second terminal electrically coupled to a cathode of a diode (D) that has an anode electrically coupled to the second electrode 302.
In this embodiment, the negative voltage pulse module 3 further includes a first resistor (R1) through which the first control signal is provided from the controller 31 to the optical coupler 32, and a second resistor (R2) electrically coupled between ground and a common node of the first resistor (R1) and the controller 31. The voltage division by the first and second resistors (R1), (R2) may effectively constrain a current flowing into the optical coupler 32 at the time of activation, thereby preventing the optical coupler 32 from damage due to an excessively high voltage provided by the controller 31.
When the root portion of the plant 100 is stimulated by the high negative voltage pulse, electrical discharge may occur at leaf tips of the plant 100. In order to prevent persons/animals from being frightened upon touching the leaf tips, the negative voltage pulse module 3 of this disclosure may further include at least one proximity sensor 36 (e.g., an ultrasonic proximity sensor) disposed on, for example, the second annular surrounding wall 11 of the housing 1, and electrically coupled to the controller 31, as shown in
Even if the voltage pulse generating circuit 34 stops output of the negative high voltage pulse, electric charges may remain on the leaf tips of the plant 100. In order to further prevent persons/animals from being frightened upon touch, the voltage pulse generating circuit 34 may further include a third resistor (R3) electrically coupled between the first and second electrodes 301, 302. By virtue of the third resistor (R3), the remaining electric charges may be discharged through a discharging loop formed by the first electrode 301, the third resistor (R3) and the second electrode 302, thus preventing occurrence of electric shocks. In one embodiment, the third resistor (R3) has a resistance of 1100 M ohms.
In this embodiment, the stimulating device further includes a temperature and humidity sensor 37, a humidifier 38 (including a humidifier control circuit), and a fan device 39 (including a fan control circuit) that are disposed on the housing 1 and are electrically coupled to the controller 31. The temperature and humidity sensor 37 provides to the controller 31 a set of ambient temperature and humidity values sensed thereby. The controller 31 may control, according to a difference between a set of preset temperature and humidity values and the set of ambient temperature and humidity values sensed by the temperature and humidity sensor 37, operation of the humidifier 38 and a speed and a direction of wind provided by the fan device 39, to thereby make the ambient temperature and humidity approach the preset temperature and humidity values, which is usually set as being suitable for the presence of NAI.
In this embodiment, the humidifier 38 and the fan device 39 are disposed above the plant pot 2, and a spray outlet of the humidifier 38 faces toward a front side of the stimulating device, so that the spray provided by the humidifier 38 may be directly blown into the air by the fan device 39, thereby avoiding adhesion of the spray on the stimulating device which may otherwise lead to safety concerns, such as current leakage.
In this embodiment, the stimulating device further includes an NAI detector 51 that detects a concentration value of ambient NAI and that is electrically coupled to the controller 31 for providing thereto the concentration value of ambient NAI thus detected. The controller 31 may determine, according to a difference between a preset concentration value of NAI and the concentration value of ambient NAI detected by the NAI detector 51, whether or not to generate the first control signal, to thereby maintain the concentration of ambient NAI within an appropriate range. The temperature sensor 37, the humidifier 38, the fan device 39 and the NAI detector 51 may be integrated as a spatial NAI homogenizing device.
According to experiments, when the second annular surrounding wall 11 is spaced apart from the plant pot 2 by a distance that ranges between 50 mm and 200 mm such that the first and second electrodes 301, 302 are not electrically coupled together through connection between the housing 1 and the plant pot 2 (see
Referring to
In summary, by virtue of the first and second conductive terminals 22, 14 that are respectively disposed on the plant pot 2 and the housing 1 and that have no direct electrical connection therebetween, a virtual loop may be formed via the air between the first and second electrodes 301, 302, thereby stimulating the plant 100 to enhance its NAI release, so as to promote indoor NAI concentration. In addition, the design of the proximity sensor 36 and the third resistor (R3) may prevent persons/animals from suffering electric shocks when touching the plant 100. Through the design of the temperature and humidity sensor 37, the humidifier 38, the fan device 39 and the NAI detector 51, the ambient NAI concentration may be properly adjusted via the controller 31, to thereby maintain the ambient NAI concentration within an appropriate range, and air quality may thus be improved.
While the disclosure has been described in connection with what is(are) considered the exemplary embodiment(s), it is understood that this disclosure is not limited to the disclosed embodiment(s) but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
103112681 A | Apr 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
882699 | Latshaw | Mar 1908 | A |
2831804 | Collopy | Apr 1958 | A |
4226246 | Fragnet | Oct 1980 | A |
4678554 | Oppitz | Jul 1987 | A |
4960524 | Inculet | Oct 1990 | A |
5464456 | Kertz | Nov 1995 | A |
5740627 | Levengood | Apr 1998 | A |
6010613 | Walters | Jan 2000 | A |
6516563 | Matthews | Feb 2003 | B1 |
8234814 | Kertz | Aug 2012 | B2 |
8690997 | Tatsumi | Apr 2014 | B2 |
20050186108 | Fields | Aug 2005 | A1 |
20070266624 | Tanaka | Nov 2007 | A1 |
20110273143 | Aanensen | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
102068713 | May 2011 | CN |
201957493 | Sep 2011 | CN |
203721419 | Jul 2014 | CN |
H02255020 | Oct 1990 | JP |
2004208626 | Jul 2004 | JP |
3142022 | Jun 2008 | JP |
2010515426 | May 2010 | JP |
101999-0064904 | Aug 1999 | KR |
Entry |
---|
Translation provided of CN102068713A. |
Yang Yun-Jing, Xi Gang, Liu Kai, Zhang Xiao-Hui, Application of Negative High-voltage Pulse Technology to Improve Air Purification Ability of Plants, High Voltage Engineering, vol. 37, No. 1, Jan. 31, 2011, pp. 190-197, China Academic Journal Electronic Publishing House, China. |
Number | Date | Country | |
---|---|---|---|
20150282436 A1 | Oct 2015 | US |