This invention relates generally to oil production and, specifically, to stimulating production of oil by heating the formation around a well by an RF antenna heater tool inserted into the well.
As the resources containing oils that are the easiest and cheapest to extract are being dissipated, it is becoming necessary to extract and produce oils that do not flow freely, which makes the extraction a more time, energy, and money consuming process. Some oils are more difficult to extract either because the oil is heavy and viscous, or because the formation has a low permeability. Heating is then required to raise the production rate of such oils to economic values.
Generally, hydro carbonaceous deposits need to be heated to stimulate oil production. Several systems and methods for extracting oil from such deposits have been developed. Some conventional systems function by heating hydro carbonaceous deposits to stimulate oil production using RF energy by placing antennas in boreholes. It has been discovered that these conventional systems fail to deliver uniform heating to the formation. Such antennas usually act as monopoles; in other words they radiate preferentially from their ends, resulting in non-uniform heating. Antennas with non-uniform heating along their length may be uneconomic, since energy would be wasted in overheated sections, and under-heated sections would not be stimulated. Moreover, conventional systems waste a large amount of resources in extracting the oil. In other words, conventional systems are not efficient, making them impractical for widespread application. Moreover, it has been discovered that these conventional systems tend to suffer from dielectric breakdown, which is undesirable.
Other conventional systems operate by placing electrical resistance heaters into boreholes. These systems heat uniformly along the length, but the heat has to flow by thermal conduction from the heater to the casing and thence into the surrounding formation. Rocks have low thermal conductivity, so heat conduction is very time-consuming and requires a long time, in some cases, years. Moreover, heaters that rely on thermal conduction are limited to wells in which fluid inflow is small (e.g., on the order of 0.1 to 1 bb/day/m of well length. For systems where fluids being produced carry heat back into the well, fluid flow works against heat conduction and decreases the effectiveness of such heaters.
There is a need in the art for an RF antenna that can be inserted in a borehole such as an oil well so as to heat the formation uniformly along the length of the antenna and thus make efficient use of the RF energy.
Emplacing an antenna in a borehole requires an effective method of delivering power down to the antenna pay zone through a coaxial cable or transmission line, without losing heat to the overburden. The overburden is a layer of the earth covering a pay zone. The pay zone is a layer of the formation with elevated content of hydro carbonaceous material. Conventional systems and methods attempted to solve at least a part of this problem. However, the conventional systems and methods did not function as hypothesized. Moreover, the conventional systems and methods disclosed structures that often resulted in dielectric breakdown at points where fields were concentrated.
According to one aspect of the present invention, a system emplaced in a subsurface formation configured to produce radio frequency (RF) fields in said formation for recovery of thermally responsive constituents includes an inner conductor and an outer conductor. Said inner and said outer conductors are coaxially disposed tubular conductors connected at an earth surface to an RF power source, said inner and outer conductors forming a coaxial transmission line proximate said earth surface and a dipole antenna proximate said formation. Said inner conductor protrudes from said outer conductor from a junction exposing a gap between said inner and outer conductors to a deeper position within said formation. Said RF power source is configured to deliver, via the conductors, RF fields to said formation. The system also includes at least one choke structure attached to said outer conductor at a distance at least ¼ wavelength above said junction. The choke structure is configured to confine a majority of said RF fields in a volume of said formation situated adjacent to said antenna between the depth of said choke and a distal end of said inner conductor. Said distal end of said inner conductor opposes an end of said inner conductor that is connected at said earth surface to said RF power source.
According to a further aspect of the present invention, a method of heating a subsurface hydro carbonaceous earth formation includes forming a borehole into or adjacent to said formation and emplacing into said borehole an inner and an outer coaxially disposed tubular conductors. Each of the conductors is connected at an earth surface to an RF power source. The conductors form a coaxial transmission line proximate the earth surface and a dipole antenna proximate said formation. Said inner conductor protrudes from said outer conductor from a junction exposing a gap between said inner and said outer conductors to a deeper position within said formation. Said RF power source is configured to deliver, via the conductors, RF fields to said formation. The method further includes attaching at least one RF choke to said outer conductor at a distance at least about ¼ wavelength above the junction at the selected frequency of operation. The RF choke is configured to confine a majority of said heating within said electric fields situated in a volume of said formation adjacent to said RF antenna and situated between said choke and a distal end of said inner conductor. Said distal end of said inner conductor opposes an end of said inner conductor that is connected at said earth surface to said RF power source.
According to a further aspect of the present invention, a method of heating fluids contained in a volume of a formation adjacent to a buried RF dipole antenna structure includes forming a borehole into or adjacent to said formation. The method further includes emplacing into said borehole an inner and an outer coaxially disposed tubular conductors, the conductors each being connected at an earth surface to an RF power source. The conductors form a coaxial transmission line proximate the earth surface and a dipole antenna proximate said formation. The inner conductor protrudes from the outer conductor from a junction exposing a gap between the inner and the outer conductors to a deeper position within the formation. The RF power source is configured to deliver, via the conductors, RF fields to said formation so that said heating lowers a viscosity of said fluids and thereby increases a flow rate of said fluids from said formation into said inner conductor, said heating being independent of said flow rate.
Yet another aspect of the present invention relates to a method of increasing permeability of a volume of a formation adjacent to a buried RF dipole antenna structure. The method includes forming a borehole into or adjacent to said formation and emplacing into said borehole an inner and an outer coaxially disposed tubular conductors. The conductors are each connected at an earth surface to an RF power source. The conductors form a coaxial transmission line proximate the earth surface and a dipole antenna proximate said formation. Said inner conductor protrudes from said outer conductor from a junction exposing a gap between said inner and said outer conductors to a deeper position within said formation. Said RF power source is configured to deliver, via the conductors, RF fields to said formation, and heating said formation to a temperature of at least about 270° C., at which temperature organic material within said formation is converted to oil and gas, thereby opening pores in said formation and increasing the permeability to fluid flow.
A further aspect of the present invention relates to a method of producing channels for fluid flow in a volume of a formation adjacent to a buried RF dipole antenna structure. The method includes forming a borehole into or adjacent to said formation; and emplacing into said borehole an inner and an outer coaxially disposed tubular conductors. The conductors are each connected at an earth surface to an RF power source. The conductors form a coaxial transmission line proximate the earth surface and a dipole antenna proximate said formation. Said inner conductor protrudes from said outer conductor from a junction exposing a gap between said inner and said outer conductors to a deeper position within said formation. Said RF power source is configured to deliver, via the conductors, RF fields to said formation so as to heat said formation adjacent to said antenna to a temperature of at least 270° C., at which temperature differential thermal expansion of said formation produces stresses which cause fractures to form in said formation adjacent said antenna, and thereby to produce channels for fluid to flow into said inner conductor.
A further aspect of the present invention relates to a method of increasing recovery of oil in a steam-assisted gravity drive method, by pretreating a volume a formation adjacent to a buried RF dipole antenna structure. The method includes forming a borehole into or adjacent to said formation; and emplacing into the borehole an inner and an outer coaxially disposed tubular conductors. The conductors are connected at an earth surface to an RF power source. The conductors form a coaxial transmission line proximate the earth surface and a dipole antenna proximate said formation. The inner conductor protrudes from said outer conductor from a junction exposing a gap between the inner and the outer conductors to a deeper position within the formation. The RF power source is configured to deliver, via the conductors, RF fields to said formation, and heating said formation adjacent to said borehole to a temperature of at least about 270° C., so as to develop permeability along the length of said borehole, to provide a path for steam to flow from a whole length of the borehole into the formation.
Steam-assisted gravity drive (SAGD) includes injection of steam along the length of a horizontal well. It is difficult to initiate steam flow into the formation along the whole length of such a well, because steam tends to flow preferentially into areas of higher permeability, thus shorting flow into large parts of the well. As a result, oil is recovered from only a fraction of the reservoir. Pretreatment of the volume immediately around the well using the heater of the present invention can assist initiation of more uniform SAGD by developing permeability around the well. Absorption of heat by RF is governed mainly by presence of moisture. Practically all reservoir rock contains moisture within pores, so all of the volume around the well will be heated. Therefore, preheating can develop more uniform permeability around the well, and make the initial path for steam injection more uniform.
Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The foregoing and additional aspects, implementations and advantages of the present invention will become apparent to those of ordinary skill in the art upon reading the following detailed description and upon reference to the drawings, a brief description of which is provided next. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of various embodiments of the invention.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
A heater that can be installed in a borehole such as an oil well has a number of useful applications, some of which are described in a separate section below. For example, heating around the borehole can lower the viscosity of oil, increasing its flow rate into the well. Such heaters are of two main types: 1) Resistance heaters that produce heat in the well, and 2) RF antenna heaters that heat by producing RF fields and associated currents in the formation near the well. Resistance heaters depend on thermal conduction to transmit heat from the casing into the surrounding formation. RF heaters transmit energy directly into the surrounding formation, and heat the formation volumetrically. RF heaters may therefore be more effective in heating the formation and may transfer more heat. Although the energy falls off radially according to the reciprocal of radius squared, so that the energy is preferentially deposited near the antenna; thermal conduction helps to carry the heat further into the formation. Thus, RF heaters have two ways to carry heat into the formation, compared to one way for resistance heaters.
With an RF antenna, the surrounding formation is heated directly, and the heating process is not delayed due to the time-consuming thermal conduction process. Also, RF fields around an antenna are unaffected by fluid inflow, and deposit heat in the volume of the formation regardless of fluid inflow. Heat is carried back into the well by the very fluid inflow that the heater may seek to promote, and thus tends to counter the flow of heat by conduction.
Computer simulations below demonstrate how an RF antenna can more effectively heat a formation in the presence of larger fluid inflows than heaters that rely on thermal conduction. As a result the production rate is increased more by an RF antenna than by a resistance heater. This is an advantage, since wells with larger inflows are more productive and hence more efficient and economic. For example,
A desirable range for oil viscosity around the well may be 10 to 500 centipoise (CP). Typical heavy oils may have viscosity of 1000 to several hundred thousand cp at reservoir temperature, which may range from 10 to 50° C. Viscosity varies in an exponential way with temperature, so that raising the temperature into the range of 50 to 120° C. may lower the viscosity into said desirable range.
An RF heater requires a transmission line to deliver power through an overburden to the heater. Because of the position of an RF choke in the present invention, unwanted RF heating from the transmission line is minimized; while uniform heating in an antenna long enough to heat an extended formation is made possible. The position of the choke in the system according to the present invention provides for two poles of the antenna; hence it is a Dipole antenna. Said position also allows for a heater as long as 1000 m with relatively uniform heating along its length.
Dielectric breakdown can occur at critical points in the antenna system where fields are intense. The present invention discloses methods to disperse such fields and prevent dielectric breakdown.
Conventional RF heaters that have previously been developed have not been successful as they are generally unable to achieve even heating rates along their length as a result of hot spots. The conventional RF heaters also have suffered from problems of dielectric breakdown at structural discontinuities where fields are concentrated.
Where B=magnetic field and E=electric field. The central conductor of the coaxial cable is coupled to a rod-like antenna. An insulator media with low dielectric properties surrounds the connection. In one aspect of the present invention, the antenna is a 10-m antenna. The axial length of the insulator media with low dielectric properties is 0.8 m. The diameter of the antenna with the insulator media with low dielectric properties surrounding it is 0.4 m. The diameter of the antenna without the insulator media is 0.3 m. The antenna may be inserted into a tar sand deposit.
A monopole is an antenna including only an emitter pole. A ground structure is located separately. The antenna is a rod-like structure which, when energized, produces RF fields and associated currents in the surroundings. When operated in open air, such fields can radiate far from the antenna, functioning as a broadcast antenna. When operated in a dielectric material such as soil, such fields and associated currents are absorbed and heat the nearby material. A coax is a coaxial arrangement of two tubular conductors used as a power transmittal structure.
A computer simulation based on the geometry of
At a different frequency, hot spots are also produced.
Additional protection against dielectric breakdown or arcing at this or other points in the structure may be provided by electronic control circuitry. Thermocouples or fiber optic temperature sensing devices may be installed at locations where breakdown is likely to occur. Then if temperature rises at such points more than in adjacent points the current may be reduced or temporarily interrupted until the breakdown heals. Additionally, control circuitry may be installed to limit current from the source to a selected value based on the desired heating rate, so that excessive draw is prevented from potential breakdown zones.
The system 400 includes a first antenna pole 416 and a second antenna pole 418. The insulator also overlaps the first antenna pole 416. The first antenna pole 416 is defined by the portion of the inner conductor 408 that extends beyond the outer conductor 406. The second pole 418 is defined by a portion of the outer conductor 406 that is located between the junction 411 and an RF choke 422. The choke 422 is mounted on the outer conductor 406 at least ¼ wavelength above the junction 411 where the inner conductor protrudes from the outer conductor 406. The inner conductor 408 and the outer conductor 406 define a coaxial cable 424 between the earth surface and the choke 422. The coaxial cable 424 extends through an overburden section. The coaxial cable 424 forms a transmission line from the RF power source 403 to the first antenna pole 416 and the second antenna pole 418. Said transmission line is intended to deliver RF energy to the first antenna pole 416 and the second antenna pole 418 without excessive waste of heat as said transmission line passes through an overburden.
In addition, to prevent wasteful heating of the transmission line coax due to a skin effect, the outer conductor may be lined with aluminum or copper, and the inner conductor may be coated with aluminum or copper. Thus, when current flows through these skin layers due to magnetic effects, the resistance of the skin layer will be low and little heat will be generated there. Alternatively, the coax tubing may be made entirely of non-magnetic metals.
A dipole is an antenna that includes within its structure both an emitter section and a ground section, referred to as separate poles. In this invention the dipole antenna is formed by the first pole 416 and the second pole 418. The dipole antenna produces electric fields which can heat a formation around a well, depositing energy within the volume of the formation adjacent to the antenna poles 416 and 418.
To control the axial uniformity of heating, the present invention attaches a ¼ wavelength choke 422 to the outer conductor 406 a distance at least another ¼ wavelength above the junction 411, as shown in
According to one aspect of the present invention, a majority of heating is confined in RF fields situated in the portion of the formation adjacent to the first antenna pole 416 and the second antenna pole 418. The antenna poles 416 and 418 may be configured to heat the formation in a series of temperature peaks of substantially the same intensity along the length of said antenna poles 416 and 418.
The length of the first pole 416 and the second pole 418 may be longer than ¼ wavelength. The uniformity of heating is extended when the length of the poles is increased. To heat thicker formations in vertical wells or more extensive formations in horizontal wells which may extend tens or hundreds of meters, a longer heater is needed. Therefore a simulation was done with a dipole heater of similar design to that in
Uniform heating is important for efficient use of applied energy. To further improve the uniformity of heating along the length of the formation, the RF power source 403 may be configured to apply at least two frequencies chosen to shift the location of peaks in the standing wave on the antenna, so that peaks at one frequency overlap valleys at another, as shown by curves 1 and 2 in
The heating peaks 1 associated with the first frequency in
Furthermore the height of the peaks in
As the volume of the formation adjacent the first antenna pole 416 and the second antenna pole 418 becomes heated, the material properties of the formation, especially the dielectric absorption may change. For example the moisture, which mainly determines the dielectric absorption may evaporate, changing from 4 percent to less than 1 percent. Additional electronic circuitry such as variable capacitors or inductors may be combined with the RF source 403 in order to control and stabilize the frequency and the phase angle even as the material properties change with temperature. This is important to stabilize the position of heating peaks so that their positions may continue to overlap.
The computer simulations of
In conclusion, the method of this invention can result in uniform heating along the length of the dipole antenna. The placement of the choke part way up the length of the coax transmission line turns the part of the line below the choke into the second pole of the dipole antenna, and the choke also decreases the fields around the transmission line above the choke.
Generally, chokes are used in antennas operating in open air, which is a low-loss material. The choke 422 in
The tendency for breakdown can be reduced by filling the aperture of the choke 422 with low-loss dielectric material. Low loss dielectric materials include silica sand, ceramics, or inorganic cements or polymers. Said dielectric should be made of materials that absorb little moisture from the earth, since water has a high dielectric absorption. Said dielectric should not contain occlusions such as air bubbles, which tend to concentrate fields.
Choke structures normally present a concentration of electric fields at the aperture of their open end.
The length of a choke determines its resonant frequency, which is important because the choke is most effective in blocking the resonant frequency and nearby frequencies from passing around the choke. The length of the choke 522 is about ¼ wavelength of the frequency selected to effectively operate the heater as described above, and the length of said circuitous folds of a folded choke structure is to be included in defining the ¼ wavelength of the choke structure.
Production of fluids from a formation may be increased by heating the formation near the well to lower the viscosity of the fluids contained in the formation. This method is effective because it heats the portion of the formation near the well, where flow lines converge and viscosity is most important. The temperature of oil at any point in a formation is the same as the temperature of the rock at the same point, because they are in intimate contact. Therefore heating of the formation near the well also heats the oil flowing into the well, lowering its viscosity. High viscosity near the well limits the production rate, because flow lines converge near the well, constricting the flow there. Lowering viscosity overcomes this problem.
Placing a resistance heater in a well can heat the well casing or wall, so that heat can then flow by thermal conduction into the surrounding media. Unfortunately when oil is then produced it carries heat back into the well, limiting the effect of thermal conduction.
Fields from an RF antenna on the other hand penetrate the surrounding media and heat it directly. The heat deposition then is largely independent of the flow of the fluids. RF energy is largely absorbed by moisture in the formation, regardless of whether the moisture is moving or not. The heat production is therefore not affected by fluid flowing into the well even though this fluid carries heat back in the direction of the well.
Simulations in three examples of
For the case of the resistance heater the calculation was based on heat flow by conduction from the casing of the well into the surrounding rock. The casing was assumed to be heated at 200° C. In the RF dipole heater case they included heat production in the formation around the well based on the 1/r2 law, where r is the radial distance from the center of the well. Both cases included heat flow within the formation by conduction as well as by convection. The calculations of oil flow rate used reservoir engineering equations, based on permeability properties of the formation, and the viscosity of oil as a function of temperature. The formation permeability is specified for each example below. Reservoir pressure causing flow was assumed to be 2000 psi, while well pressure was 40 psi. Gravity was neglected as unimportant in these examples, so these examples can apply to horizontal wells, or vertical where the effect of pressure exceeds the effect of gravity.
The reason for the higher production rate with the dipole heater according to the present invention is that the delivery of heat into the deposit by the dipole heater is due to an electrical effect, and is not influenced by the flow of oil. Heat lowers the viscosity of oil in the deposit even when flow is relatively high (as much as 1 to 10 bbl/day/m). While the temperature rise is somewhat less than for the previous cases because flowing oil carries more heat back into the well, it is still effective in lowering the viscosity and increasing the oil flow rate. High flow also avoids overheating of oil when it enters the well. Therefore, in this example the dipole heater according to the present invention is especially applicable to wells with initially high, more economic production rate.
Additional Applications
The Dipole Heater has other applications. It may be used to heat and fracture tight formations by differential expansion of the rock near the well, generating pressures higher than those caused by hydraulic fracking. The RF antenna heater configuration may be used to produce fractures in the formation which provide channels to enhance flow of fluids into the well. The volume of a formation adjacent to a buried RF antenna structure may be heated to a temperature at least about 300° C. The difference between this temperature and that of the unheated rock further from the well produces stresses which cause fractures to form in the formation, which allow fluid to flow into the well. Stress calculations have shown that thermal stresses at this temperature can easily exceed rock breaking strength even under overburden pressure.
In another implementation of the present invention fluid flow may be enhanced by heating the formation near the well to pyrolysis temperature, converting organic matter in pores to oil and gas and opening up pores for fluid flow. The dipole heater according to the present invention may be used to heat rock near the well to temperatures of 270° C. or more. At this temperature the organic content in pores will be pyrolyzed, converting said content to gases and liquids that can flow out of the pores. This in turn leaves pores open to flow and makes the rock more permeable. This treatment can improve the injectivity of liquids, for example to aid hydraulic fracking. The increased permeability near the well can also improve the flow rate of fluids into the well, since it lowers the resistance to flow in the zone near the well where flow lines converge. This effect is in addition to the effect of heat on viscosity of oil flowing into the well.
In yet another application, the heater of the present invention can improve initiation of steam-assisted gravity drive (SAGD). SAGD requires injection of steam along the length of a horizontal well. It is difficult to initiate steam flow into the formation along the whole length of such a well, because steam tends to flow preferentially into areas of higher permeability, thus shorting flow into large parts of the well. As a result, oil is recovered from only a fraction of the reservoir.
Pretreatment of the volume immediately around the well using the heater of the present invention can assist initiation of more uniform SAGD by developing permeability around the well. Absorption of heat by RF is governed mainly by presence of moisture. Practically all reservoir rock contains moisture within pores, so all of the volume around the well will be heated. Therefore preheating can develop more uniform permeability around the well, and make the initial path for steam injection more uniform.
Heating produces permeability by several mechanisms. 1) Raising the temperature of heavy oil in pores around the well can lower viscosity and cause oil to flow out of pores and down by gravity toward the production well. This leaves pores open for steam to flow. 2) By heating to 270° C. in a zone around the well, any organic matter in pores is pyrolyzed, converted to gas and liquid, which again can flow down toward the producing well and leave open pores. 3) Heating to 270° C. can cause rock near the well to expand. Such differential expansion can produce fractures near the well, again producing paths to initiate steam flow.
Computer simulations in
While particular embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that this disclosure is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims. It is further understood that embodiments may include any combination of features and aspects described herein.
Number | Name | Date | Kind |
---|---|---|---|
4140179 | Kasevich et al. | Feb 1979 | A |
4196329 | Rowland | Apr 1980 | A |
4207452 | Arai | Jun 1980 | A |
4265307 | Elkins | May 1981 | A |
RE30738 | Bridges | Sep 1981 | E |
4320801 | Rowland | Mar 1982 | A |
4508168 | Heeren | Apr 1985 | A |
5293936 | Bridges | Mar 1994 | A |
7559367 | Vinegar | Jul 2009 | B2 |
7891421 | Kasevich | Feb 2011 | B2 |
8443887 | Parsche | May 2013 | B2 |
8789599 | Parsche | Jul 2014 | B2 |
20100065265 | Kasevich | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2011163156 | Dec 2011 | WO |
Entry |
---|
Baker-Jarvis, J. et al. “Mathematical Model for In Situ Oil Shale Retorting by Electromagnetic Radiation.” Fuel. vol. 67, No. 7, Jul. 1988 (54 pages). |
Bowden, J. R. et al. “In Situ Retorting of Oil Shale Using RF Heating.” Synfuels 5th Worldwide Symposium. Nov. 11-13, 1985 (22 pages). |
Bridges, J. E. “Backscatter.” IEEE Microwave Magazine: for the Microwave & Wireless Engineer. vol. 4, No. 4, Dec. 2003 (pp. 12 & 14). |
Bridges, J. E. “In Situ RF Heating for Oil Sand and Heavy-Oil Deposits.” Proceedings of the UNITAR III Conference on Tar Sands and Heavy Crudes. Jul. 1985 (11 pages). |
Bridges, J. E. “Net Energy Recoveries for the In Situ Dielectric Heating of Oil Shale.” Proceedings of the 11th Oil Shale Symposium. Apr. 12-14, 1978 (50 pages.). |
Bridges, J.E. “Physical and Electrical Properties of Oil Shale.” Fourth Annual Oil Shale Conversion Conference. Mar. 24-26, 1981 (48 pages). |
Bridges, J. E. “Update on Radio-Frequency In Situ Extraction of Shale Oil.” Proceedings of the 24th Oil Shale Symposium. vol. 83, No. 4, Winter 1988 (pp. 35-43). |
Bridges, J. E. “Wind Power Energy Storage for In Situ Shale Oil Recovery with Minimal CO2 Emissions.” IEEE Transactions on Energy Conversion. vol. 22, No. 1, Mar. 2007 (pp. 103-109). |
Carlson, R. D. “Development of IIT Research Institute RF Heating Process for In Situ Oil Shale/Tar Sand Fuel Extraction—An Overview.” Institute for Clean and Secure Energy. Apr. 1981 (9 pages). |
Fairley, P. “Electric Power: Steady as She Blows.” IEEE Spectrum. vol. 40, No. 8, Aug. 2003 (pp. 35-39). |
Johnson, H. R. et al. “Strategic Significance of America's Oil Shale Resource.” United States Department of Energy, Office of Naval Petroleum and Oil Shale Reserves. Assessment of Strategic Issues, vol. I, Mar. 2004 (45 pages). |
Justus, D. “Case Study 5: Wind Power Integration into Electricity Systems.” International Energy Technology Collaboration and Climate Change Mitigation. Organisation for Economic Co-operation and Development. Mar. 2005 (32 pages). |
Kleinberg, R. et al. “Oil Shale Formation Evaluation by Well Log and Core Measurements.” Proceedings of the 30th Oil Shale Symposium. Oct. 2010 (18 pages). |
Macchiarella, G. “Novel Approach to the Synthesis of Microwave Diplexers.” IEEE Transactions on Microwave Theory and Techniques. vol. 54, No. 12, Dec. 2006 (pp. 4281-4290). |
Mallon, R. G. “Economics of Shale Oil Production by Radio Frequency Heating.” Lawrence Livermore Laboratory, University of California. May 7, 1980 (pp. 128-137). |
McGee, B. C. “Electro-Thermal Pilot in the Athabasca Oil Sands: Theory Versus Performance.” World Oil. vol. 229, No. 11, [online] Nov. 2008. Retrieved from the Internet: < URL: http://www.worldoil.com/November-2008-Electro-thermal-pilot-in-the-Athabasca-oil-sands-Theory-versus-performance.html> (12 pages). |
McGee, B. C. “Power Losses in Steel Pipe Delivering Very Large Currents.” IEEE Transactions on Power Delivery. vol. 17, No. 1, Jan. 2002 (pp. 25-32). |
Phelan, J. et al. “Design, Demonstration and Evaluation of a Thermal Enhanced Vapor Extraction System.” Sandia Report, SAND97-1251, Sandia National Laboratories. Aug. 1997 (183 pages). |
Shapouri, H. et al. “The Energy Balance of Corn Ethanol: An Update.” United States Department of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses. Agricultural Economic Report No. 813, Jul. 2002 (pp. 1-16). |
Sierra, R. “Promising Progress in Field Application of Reservoir Electrical Heating Methods.” Society of Petroleum Engineers. SPE International Thermal Operations and Heavy Oil Symposium. Mar. 12-14, 2001 (pp. 1-17). |
Snow, R. H. et al. “Comparison of Dielectric Heating and Pyrolysis of Eastern and Western Oil Shales.” Proceedings of the 12th Oil Shale Symposium. Mar. 1979 (16 pages). |
Snow, R. H. et al. “Control of In Situ Oil Production in Unconventional Resources by RF Heating (PyroArray).” Proceedings of the 30th Oil Shale Symposium, Colorado School of Mines. Oct. 2010 (12 pages). |
Snow, R. H. et al. “The IITRI RF Process for Oil Shale—Recent Developments.” Symposium Papers: Conference on Synthetic Fuels from Oil Shale II. Oct. 26-29, 1981 (pp. 367-390). |
Sresty, G. C. et al. “Kinetics of Low-Temperature Pyrolysis of Oil Shale by the IITRI RF Process.” Proceedings of the 15th Oil Shale Symposium. Apr. 28-30, 1982 (13 pages). |
Streeter, W. S. “Economic Aspects of Oil Shale Production Using Radio-Frequency In Situ Retorting.” 24th Oil Shale Symposium Proceedings. vol. 83, No. 4, Winter 1988 (pp. 44-50). |
Stroemich, C. P. “Wellbore Power Transmission For In-Situ Electrical Heating.” Alberta Oil Sands Technology and Research Authority (AOSTRA) Journal of Research. vol. 6, No. 4, Sep. 1990 (pp. 273-294). |
Number | Date | Country | |
---|---|---|---|
20140152312 A1 | Jun 2014 | US |