The following commonly assigned U.S. patent applications are related, are all filed on the same date as the present application and are all herein incorporated by reference in their entirety: “Baroreflex Stimulation System to Reduce Hypertension,” Ser. No. 10/746,134; and “Lead for Stimulating the Baroreceptors in the Pulmonary Artery,” Ser. No. 10/746,861.
This application relates generally to implantable medical devices and, more particularly, to systems, devices and methods for reducing hypertension using baroreceptor stimulation.
Medical leads have a distal end having one or more electrodes and a proximal end having a terminal that is coupled to a pulse generator. Electrical therapy is delivered from the pulse generator to the body via the electrode.
Hypertension is a cause of heart disease and other related cardiac co-morbidities. Hypertension occurs when blood vessels constrict. As a result, the heart works harder to maintain flow at a higher blood pressure, which can contribute to heart failure. Many patients who suffer from hypertension do not respond to treatment, such as treatments related to lifestyle changes and hypertension drugs.
A pressoreceptive region is capable of sensing changes in pressure, such as changes in blood pressure. Pressoreceptor regions are referred to herein as baroreceptors, which generally include any sensors of pressure changes. For example, baroreceptors include afferent nerves and further include sensory nerve endings that are sensitive to the stretching of the wall that results from increased blood pressure from within, and function as the receptor of a central reflex mechanism that tends to reduce the pressure. Baroreflex functions as a negative feedback system, and relates to a reflex mechanism triggered by stimulation of a baroreceptor. Increased pressure stretches blood vessels, which in turn activate baroreceptors in the vessel walls. Activation of baroreceptors naturally occurs through internal pressure and stretching of the arterial wall, causing baroreflex inhibition of sympathetic nerve activity (SNA) and a reduction in systemic arterial pressure. An increase in baroreceptor activity induces a reduction of SNA, which reduces blood pressure by decreasing peripheral vascular resistance.
The general concept of stimulating afferent nerve trunks leading from baroreceptors is known. For example, direct electrical stimulation has been applied to the vagal nerve and carotid sinus using nerve cuffs. Research has indicated that electrical stimulation of the carotid sinus nerve can result in reduction of experimental hypertension, and that direct electrical stimulation to the pressoreceptive regions of the carotid sinus itself brings about reflex reduction in experimental hypertension.
What is needed is a less invasive technique for providing long-term electrical stimulation of the baroreflex.
One aspect provides a lead for placement in the pulmonary artery. The lead includes a flexible lead body extending from a proximal end to a distal end, the distal end having a biased portion having an outer diameter dimensioned to abut a wall of a pulmonary artery, an electrode coupled proximate the distal end. An implantable pulse generator is electrically coupled to the electrode. The implantable pulse generator is adapted to deliver a baroreflex stimulation signal to a baroreceptor in the pulmonary artery via the electrode.
One aspect includes a method. The method includes positioning an electrode on a distal end of a lead within a pulmonary artery, the distal end having a biased portion such that an outer diameter of the biased portion abuts a wall of the pulmonary artery, and delivering a baroreflex stimulation signal to a baroreceptor in the pulmonary artery via the electrode.
The following detailed description and accompanying drawings show specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
A brief discussion of hypertension and the physiology related to baroreceptors is provided to assist the reader with understanding this disclosure. This brief discussion introduces hypertension, the autonomic nervous system, and baroreflex.
Hypertension is a cause of heart disease and other related cardiac co-morbidities. Hypertension generally relates to high blood pressure, such as a transitory or sustained elevation of systemic arterial blood pressure to a level that is likely to induce cardiovascular damage or other adverse consequences. Hypertension has been arbitrarily defined as a systolic blood pressure above 140 mm Hg or a diastolic blood pressure above 90 mm Hg. Hypertension occurs when blood vessels constrict. As a result, the heart works harder to maintain flow at a higher blood pressure. Consequences of uncontrolled hypertension include, but are not limited to, retinal vascular disease and stroke, left ventricular hypertrophy and failure, myocardial infarction, dissecting aneurysm, and renovascular disease.
The automatic nervous system (ANS) regulates “involuntary” organs, while the contraction of voluntary (skeletal) muscles is controlled by somatic motor nerves. Examples of involuntary organs include respiratory and digestive organs, and also include blood vessels and the heart. Often, the ANS functions in an involuntary, reflexive manner to regulate glands, to regulate muscles in the skin, eye, stomach, intestines and bladder, and to regulate cardiac muscle and the muscle around blood vessels, for example.
The ANS includes, but is not limited to, the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system is affiliated with stress and the “fight or flight response” to emergencies. Among other effects, the “fight or flight response” increases blood pressure and heart rate to increase skeletal muscle blood flow, and decreases digestion to provide the energy for “fighting or fleeing.” The parasympathetic nervous system is affiliated with relaxation and the “rest and digest response” which, among other effects, decreases blood pressure and heart rate, and increases digestion to conserve energy. The ANS maintains normal internal function and works with the somatic nervous system.
The subject matter of this disclosure generally refers to the effects that the ANS has on the heart rate and blood pressure, including vasodilation and vasoconstriction. The heart rate and force is increased when the sympathetic nervous system is stimulated, and is decreased when the sympathetic nervous system is inhibited (e.g. when the parasympathetic nervous system is stimulated).
Baroreflex is a reflex triggered by stimulation of a baroreceptor. A baroreceptor includes any sensor of pressure changes, such as sensory nerve endings in the wall of the auricles of the heart, cardiac fat pads, vena cava, aortic arch and carotid sinus, that is sensitive to stretching of the wall resulting from increased pressure from within, and that functions as the receptor of the central reflex mechanism that tends to reduce that pressure. Additionally, a baroreceptor includes afferent nerve trunks, such as the vagus, aortic and carotid nerves, leading from the sensory nerve endings. Stimulating baroreceptors inhibits sympathetic nerve activity (stimulates the parasympathetic nervous system) and reduces systemic arterial pressure by decreasing peripheral vascular resistance. Baroreceptors are naturally stimulated by internal pressure and the stretching of the arterial wall.
Some aspects of the present subject matter locally and directly stimulate specific nerve endings in arterial walls rather than stimulate afferent nerve trunks in an effort to stimulate a desire response (e.g. reduced hypertension) while reducing the undesired effects of indiscriminate stimulation of the nervous system. For example, some embodiments stimulate baroreceptor sites in the pulmonary artery. Some embodiments of the present subject matter involve stimulating baroreceptor sites in the aorta.
Lead 100 is coupled to an implantable pulse generator 140. Lead 100 includes conductors, such as coiled conductors that electrically couple pulse generator 140 to electrode 130. Accordingly, implantable pulse generator 140 can deliver a baroreflex stimulation signal to a baroreceptor in the pulmonary artery via the electrode 130. The lead further includes outer insulation to insulate the conductor. The system can include a unipolar system with the case acting as an electrode or a bipolar system with a pulse between two distally located electrodes.
In one embodiment, pulse generator 140 includes hardware, circuitry and software to perform NS functions. Some embodiments can also perform an AHT function. Pulse generator includes controller circuitry 142. The controller circuitry 142 is capable of being implemented using hardware, software, and combinations of hardware and software. For example, according to various embodiments, the controller circuitry 142 includes a processor to perform instructions embedded in a memory to perform functions associated with NS therapy such as AHT therapy. In one example, the pulse generator delivers a pulse train having a frequency of between about 10 to 150 hertz via the electrode. In one embodiment, the pulse generator can deliver a waveform of 30 hertz, 2.5 msec, at 5 volts. Some embodiments deliver a waveform of 100 hertz, 1.0 msec, at 1, 3, or 5 volts, for example.
A portion of the pulmonary artery 204 and aorta arch 203 are proximate to each other. According to various aspects of the present subject matter, the baroreflex is stimulated in or around the pulmonary artery by at least one electrode intravascularly inserted into the pulmonary artery. Aspects of the present subject matter provide a relatively noninvasive surgical technique to implant a baroreceptor stimulator intravascularly into the pulmonary artery. The baroreceptors 206, for example, are sensitive to stretching of the wall resulting from increased pressure from within. Activation of these nerve endings reduces pressure.
As illustrated, the pulmonary artery 204 includes a number of baroreceptors 206, as generally indicated by the dark areas. Furthermore, a cluster of closely spaced baroreceptors 206B is situated near the attachment of the ligamentum arteriosum 212. According to various embodiments of the present subject matter, a lead is inserted through a peripheral vein and threaded through the tricuspid valve into the right ventricle, and from the right ventricle through the pulmonary valve 208 and into the pulmonary artery 204 to simulate baroreceptors in and/or around the pulmonary artery. In various embodiments, for example, the lead is positioned to stimulate the cluster of baroreceptors 206B near the ligamentum arteriosum 212.
There are also baroreceptor fields in the aortic arch 203, near the ligamentum arteriosum 212, and in the trunk 220 of the pulmonary artery 204. Some embodiments position the lead in the pulmonary artery to stimulate baroreceptor sites in the aorta, possibly via the ligamentum arteriosum, or in the pulmonary trunk, or in either the right or left pulmonary arteries.
As noted, the outer diameter of the biased portion 122 is designed to expand to abut the outer walls 304 of the pulmonary artery so as to fix the lead and the electrode in place by frictional forces. In this example, the electrode is adapted to be located near the ligamentum arteriosum 212 of the left pulmonary artery 204. In some embodiments, at least a portion of electrode 130 can include a porous surface to further help fix the electrode within the artery.
In one embodiment, the biased portion 122 can have an outer biased diameter of about 10 mm to about 20 mm. Other embodiments can have a larger diameter. One example has a pitch of at least 5 coils per inch to provide high arterial surface contact and increased fixation. In general, the distal end and the electrode are dimensioned to optimize direct, low-voltage, high-frequency nerve stimulation.
In one embodiment, lead 100 can include a second electrode 312 located proximally from electrode 130. This electrode can be used for bradyarrhythmia therapy, tachyarrhythmia therapy, as a sensing electrode, or as a cathode for electrode 130.
In one example, electrode 130 is adapted to be chronically implanted in the pulmonary artery. For example, by passively mounting the electrode within the artery, no long-term damage is done to the artery.
In one example use of lead 700, a system can include baroreceptor stimulation circuitry and sensor circuitry. The circuitry can be within pulse generator 140 (
Lead 700, for example, is capable of being intravascularly introduced to stimulate a baroreceptor site, such as the baroreceptor sites in the pulmonary artery, aortic arch, or ligamentum arteriosum. One or more additional electrodes can be provided to pace and/or sense cardiac activity, such as that which may occur within the right ventricle with the sensor 710 located in or near the pulmonary artery and programmed to stimulate and sense, either directly or indirectly through surrogate parameters, baroreflex activity.
To provide hypertension therapy according to one embodiment, a lead, such as any of the leads discussed herein, is intravascularly inserted through a peripheral vein and through the tricuspid valve into the right ventricle of the heart and then from the right ventricle through the pulmonary valve into the pulmonary artery. An electrode on the lead is fixated to a region of the pulmonary artery having one or more baroreceptors. One example passively fixates the electrode proximate the ligamentum arteriosum of the left pulmonary artery. In one embodiment, the pulse generator designed to intermittently pace with low-voltage, high frequency pulse train. For example, one embodiment delivers at least a 10 hertz pulse train via the electrode. As noted above, in some embodiments the pulse generator can deliver a waveform of 30 hertz, 2.5 msec, at 5 volts. Some embodiments deliver a waveform of 100 hertz, 1.0 msec, at 1, 3, or 5 volts, for example. In some embodiments, the baroreceptor can be intermittently paced for about 5 to 10 seconds each minute at a voltage of about 0.1 volts to 10 volts and a frequency between about 10 Hz and 150 Hz. Some examples utilize a voltage between about 1 volt to about 10 volts.
The leads of the present subject matter are easy to implant and deliver uncomplicated waveforms. Moreover, the baroreceptor pacing response is immediate and reversible.
Further embodiments can include a sensor to monitor blood pressure. The sensor can sense a physiological parameter regarding an efficacy of the baroreflex therapy and provides a signal indicative of the efficacy of the baroreflex therapy. For example, a controller can be connected to a pulse generator to control the baroreflex stimulation signal and to the sensor to receive the signal indicative of the efficacy of the baroreflex therapy. In some examples, the pulse generator can be further adapted to generate a cardiac pacing signal, and the lead can include a second electrode to be positioned to deliver the cardiac pacing signal to capture the heart. The present lead allows for chronic indwelling and is easy to implant.
In various embodiments of baroreceptor pacing according to the present subject matter, the system can deliver the pulse train intermittently with no sensing, or the system can be activated by the user when the user is at rest, or it can be activated by a timer to be periodically turned off and on, or it can be activated when the user goes to sleep, for example.
According to various embodiments, the stimulator circuitry of the pulse generator can include one or more functions as described in the commonly assigned U.S. patent application filed on the same date as the present application and incorporated by reference in its entirety: “Baroreflex Stimulation System to Reduce Hypertension,” Ser. No. 10/746,134, filed on Dec. 24, 2003.
For example, various embodiments of the present subject matter relate to baroreflex stimulator systems. Such baroreflex stimulation systems are also referred to herein as neural stimulator (NS) devices or components. Examples of neural stimulators include anti-hypertension (AHT) devices or AHT components that are used to treat hypertension. Various embodiments of the present subject matter include stand-alone implantable baroreceptor stimulator systems, include implantable devices that have integrated NS and cardiac rhythm management (CRM) components, and include systems with at least one implantable NS device and an implantable CRM device capable of communicating with each other either wirelessly or through a wire lead connecting the implantable devices. Integrating NS and CRM functions that are either performed in the same or separate devices improves aspects of the NS therapy and cardiac therapy by allowing these therapies to work together intelligently.
Thus, various embodiments of the present subject matter provide an implantable NS device that automatically modulates baroreceptor stimulation using an IPS. Integrating the pressure sensor into the lead provides localized feedback for the stimulation. This localized sensing improves feedback control. For example, the integrated sensor can be used to compensate for inertia of the baroreflex such that the target is not continuously overshot. According to various embodiments, the device monitors pressure parameters such as mean arterial pressure, systolic pressure, diastolic pressure and the like. As mean arterial pressure increases or remains above a programmable target pressure, for example, the device stimulates baroreceptors at an increased rate to reduce blood pressure and control hypertension.
As mean arterial pressure decreases towards the target pressure, the device responds by reducing baroreceptor stimulation. In various embodiments, the algorithm takes into account the current metabolic state (cardiac demand) and adjusts neural stimulation accordingly. A NS device having an IPS is able to automatically modulate baroreceptor stimulation, which allows an implantable NS device to determine the level of hypertension in the patient and respond by delivering the appropriate level of therapy. However, it is noted that other sensors, including sensors that do not reside in an NS or neural stimulator device, can be used to provide close loop feedback control.
An aspect of the present subject matter relates to a chronically-implanted stimulation system specially designed to treat hypertension by monitoring blood pressure and stimulating baroreceptors to activate the baroreceptor reflex and inhibit sympathetic discharge from the vasomotor center. Baroreceptors are located in various anatomical locations such as the carotid sinus and the aortic arch. Other baroreceptor locations include the pulmonary artery, including the ligamentum arteriosum, and sites in the atrial and ventricular chambers. In various embodiments, the system is integrated into a pacemaker/defibrillator or other electrical stimulator system. Components of the system include a high-frequency pulse generator, sensors to monitor blood pressure or other pertinent physiological parameters, leads to apply electrical stimulation to baroreceptors, algorithms to determine the appropriate time to administer stimulation, and algorithms to manipulate data for display and patient management.
Various embodiments relates to a system that seeks to deliver electrically mediated NS therapy, such as AHT therapy, to patients. Various embodiments combine a “stand-alone” pulse generator with a minimally invasive, unipolar lead that directly stimulates baroreceptors in the vicinity of the heart, such as in the pulmonary artery. This embodiment is such that general medical practitioners lacking the skills of specialist can implant it. Various embodiments incorporate a simple implanted system that can sense parameters indicative of blood pressure. This system adjusts the therapeutic output (waveform amplitude, frequency, etc.) so as to maintain a desired quality of life. In various embodiments, an implanted system includes a pulse generating device and lead system, the stimulating electrode of which is positioned near endocardial baroreceptor tissues using transvenous implant technique(s).
Another embodiment includes a system that combines NS therapy with traditional bradyarrhythmia, tachyarrhythmia, and/or congestive heart failure (CHF) therapies. Some embodiments use an additional “baroreceptor lead” that emerges from the device header and is paced from a modified traditional pulse generating system. In another embodiment, a traditional CRM lead is modified to incorporate proximal electrodes that are naturally positioned near baroreceptor sites. With these leads, distal electrodes provide CRM therapy and proximal electrodes stimulate baroreceptors.
For example,
Various embodiments of the present subject matter relate to a method of sensing atrial activation and confining pulmonary artery stimulation to the atrial refractory period, preventing unintentional stimulation of nearby atrial tissue. An implantable baroreceptor stimulation device monitors atrial activation with an atrial sensing lead. A lead in the pulmonary artery stimulates baroreceptors in the vessel wall. However, instead of stimulating these baroreceptors continuously, the stimulation of baroreceptors in the pulmonary artery occurs during the atrial refractory period to avoid capturing nearby atrial myocardium, maintaining the intrinsic atrial rate and activation. Various embodiments of the present subject matter combine an implantable device for stimulating baroreceptors in the wall of the pulmonary artery with the capability for atrial sensing. Various embodiments stimulate baroreceptors in the cardiac fat pads, in the heart chambers, and/or afferent nerves.
For example, the pulse generator can include a transceiver and associated circuitry for use to communicate with a programmer or another external or internal device. Various embodiments have wireless communication capabilities. For example, some transceiver embodiments use a telemetry coil to wirelessly communicate with a programmer or another external or internal device.
The above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
3421511 | Schwartz et al. | Jan 1969 | A |
3522811 | Seymour et al. | Aug 1970 | A |
3650277 | Sjostrand et al. | Mar 1972 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4397946 | Imada et al. | Aug 1983 | A |
4730619 | Koning et al. | Mar 1988 | A |
4770177 | Schroeppel | Sep 1988 | A |
4791931 | Slate | Dec 1988 | A |
4936304 | Kresh et al. | Jun 1990 | A |
4960129 | dePaola et al. | Oct 1990 | A |
5024222 | Thacker | Jun 1991 | A |
5052388 | Sivula et al. | Oct 1991 | A |
5111815 | Mower | May 1992 | A |
5190035 | Salo et al. | Mar 1993 | A |
5199428 | Obel et al. | Apr 1993 | A |
5203326 | Collins | Apr 1993 | A |
5243980 | Mehra | Sep 1993 | A |
5318592 | Schaldach | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5334221 | Bardy | Aug 1994 | A |
5356425 | Bardy et al. | Oct 1994 | A |
5374282 | Nichols et al. | Dec 1994 | A |
5403351 | Saksena | Apr 1995 | A |
5409009 | Olson | Apr 1995 | A |
5411531 | Hill et al. | May 1995 | A |
5437285 | Verrier et al. | Aug 1995 | A |
5507784 | Hill et al. | Apr 1996 | A |
5513644 | McClure et al. | May 1996 | A |
5522854 | Ideker et al. | Jun 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5562711 | Yerich et al. | Oct 1996 | A |
5578061 | Stroetmann et al. | Nov 1996 | A |
5593430 | Renger | Jan 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5658318 | Stroetmann et al. | Aug 1997 | A |
5662689 | Elsberry et al. | Sep 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5749900 | Schroeppel et al. | May 1998 | A |
5792187 | Adams | Aug 1998 | A |
5817131 | Elsberry et al. | Oct 1998 | A |
5902324 | Thompson et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
6006122 | Smits | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6035233 | Schroeppel et al. | Mar 2000 | A |
6058331 | King | May 2000 | A |
6073048 | Kieval et al. | Jun 2000 | A |
6076014 | Alt | Jun 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6134470 | Hartlaub | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6144878 | Schroeppel et al. | Nov 2000 | A |
6161042 | Hartley et al. | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6169918 | Haefner et al. | Jan 2001 | B1 |
6178349 | Kieval | Jan 2001 | B1 |
6181966 | Nigam | Jan 2001 | B1 |
6240314 | Plicchi et al. | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6292703 | Meier et al. | Sep 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6349233 | Adams | Feb 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6381499 | Taylor et al. | Apr 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6405079 | Ansarinia | Jun 2002 | B1 |
6411845 | Mower | Jun 2002 | B1 |
6421557 | Meyer | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6442424 | Ben-Haim et al. | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6477418 | Plicchi et al. | Nov 2002 | B2 |
6487442 | Wood | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6487450 | Chen | Nov 2002 | B1 |
6493585 | Plicchi et al. | Dec 2002 | B2 |
6511500 | Rahme | Jan 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6571121 | Schroeppel et al. | May 2003 | B2 |
6571122 | Schroeppel et al. | May 2003 | B2 |
6574512 | Zhang et al. | Jun 2003 | B1 |
6584362 | Scheiner et al. | Jun 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6611713 | Schauerte | Aug 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6628987 | Hill et al. | Sep 2003 | B1 |
6662052 | Sarwal et al. | Dec 2003 | B1 |
6668191 | Boveja | Dec 2003 | B1 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690971 | Schauerte et al. | Feb 2004 | B2 |
6718203 | Weiner et al. | Apr 2004 | B2 |
6718207 | Connelly | Apr 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6763268 | MacDonald et al. | Jul 2004 | B2 |
6778854 | Puskas | Aug 2004 | B2 |
6788970 | Park et al. | Sep 2004 | B1 |
6799069 | Weiner et al. | Sep 2004 | B2 |
6804561 | Stover | Oct 2004 | B2 |
RE38654 | Hill et al. | Nov 2004 | E |
6838471 | Tracey | Jan 2005 | B2 |
6839592 | Grandjean | Jan 2005 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6882886 | Witte et al. | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6904318 | Hill et al. | Jun 2005 | B2 |
6912419 | Hill et al. | Jun 2005 | B2 |
6922585 | Zhou et al. | Jul 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6928326 | Levine | Aug 2005 | B1 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937896 | Kroll | Aug 2005 | B1 |
6942622 | Turcott | Sep 2005 | B1 |
6985774 | Kieval et al. | Jan 2006 | B2 |
7025730 | Cho et al. | Apr 2006 | B2 |
7058450 | Struble et al. | Jun 2006 | B2 |
7092755 | Florio | Aug 2006 | B2 |
7136704 | Schulman | Nov 2006 | B2 |
7139607 | Shelchuk | Nov 2006 | B1 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7158832 | Kieval et al. | Jan 2007 | B2 |
7167756 | Torgerson et al. | Jan 2007 | B1 |
7194313 | Libbus | Mar 2007 | B2 |
7218964 | Hill et al. | May 2007 | B2 |
7245967 | Shelchuk | Jul 2007 | B1 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7277761 | Shelchuk | Oct 2007 | B2 |
7294334 | Michal et al. | Nov 2007 | B1 |
7299086 | McCabe et al. | Nov 2007 | B2 |
7321793 | Ben Ezra et al. | Jan 2008 | B2 |
7333854 | Brewer et al. | Feb 2008 | B1 |
7403819 | Shelchuk et al. | Jul 2008 | B1 |
7460906 | Libbus | Dec 2008 | B2 |
7480532 | Kieval et al. | Jan 2009 | B2 |
7486991 | Libbus et al. | Feb 2009 | B2 |
7493161 | Libbus et al. | Feb 2009 | B2 |
7499748 | Moffitt et al. | Mar 2009 | B2 |
7509166 | Libbus | Mar 2009 | B2 |
7542800 | Libbus et al. | Jun 2009 | B2 |
7548780 | Libbus et al. | Jun 2009 | B2 |
7551958 | Libbus et al. | Jun 2009 | B2 |
7555341 | Moffitt et al. | Jun 2009 | B2 |
7561923 | Libbus et al. | Jul 2009 | B2 |
7570999 | Libbus et al. | Aug 2009 | B2 |
7572228 | Wolinsky et al. | Aug 2009 | B2 |
7584004 | Caparso et al. | Sep 2009 | B2 |
7587238 | Moffitt et al. | Sep 2009 | B2 |
7617003 | Caparso et al. | Nov 2009 | B2 |
7643875 | Heil, Jr. et al. | Jan 2010 | B2 |
7647114 | Libbus | Jan 2010 | B2 |
7657312 | Pastore et al. | Feb 2010 | B2 |
7706884 | Libbus | Apr 2010 | B2 |
7734348 | Zhang et al. | Jun 2010 | B2 |
7765000 | Zhang et al. | Jul 2010 | B2 |
7769450 | Libbus et al. | Aug 2010 | B2 |
7783353 | Libbus et al. | Aug 2010 | B2 |
7869881 | Libbus et al. | Jan 2011 | B2 |
8000793 | Libbus | Aug 2011 | B2 |
8024050 | Libbus et al. | Sep 2011 | B2 |
20010020136 | Sweeney et al. | Sep 2001 | A1 |
20020004670 | Florio et al. | Jan 2002 | A1 |
20020010493 | Poezevara et al. | Jan 2002 | A1 |
20020016344 | Tracey | Feb 2002 | A1 |
20020016550 | Sweeney et al. | Feb 2002 | A1 |
20020026221 | Hill et al. | Feb 2002 | A1 |
20020026222 | Schauerte et al. | Feb 2002 | A1 |
20020026228 | Schauerte | Feb 2002 | A1 |
20020032468 | Hill et al. | Mar 2002 | A1 |
20020042637 | Stover | Apr 2002 | A1 |
20020058877 | Baumann et al. | May 2002 | A1 |
20020068875 | Schroeppel et al. | Jun 2002 | A1 |
20020072776 | Osorio et al. | Jun 2002 | A1 |
20020077670 | Archer et al. | Jun 2002 | A1 |
20020082661 | Plicchi et al. | Jun 2002 | A1 |
20020091415 | Lovett et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020107553 | Hill et al. | Aug 2002 | A1 |
20020107557 | Edell et al. | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020120304 | Mest | Aug 2002 | A1 |
20020123769 | Panken et al. | Sep 2002 | A1 |
20020138109 | Keogh et al. | Sep 2002 | A1 |
20020143369 | Hill et al. | Oct 2002 | A1 |
20020161410 | Kramer et al. | Oct 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020183237 | Puskas | Dec 2002 | A1 |
20020183793 | Struble et al. | Dec 2002 | A1 |
20020188325 | Hill et al. | Dec 2002 | A1 |
20020188326 | Zheng et al. | Dec 2002 | A1 |
20020193843 | Hill et al. | Dec 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20020198571 | Puskas | Dec 2002 | A1 |
20030003052 | Hampton | Jan 2003 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030018368 | Ansarinia | Jan 2003 | A1 |
20030023279 | Spinelli et al. | Jan 2003 | A1 |
20030036773 | Whitehurst et al. | Feb 2003 | A1 |
20030040774 | Terry et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030045914 | Cohen et al. | Mar 2003 | A1 |
20030060848 | Keival et al. | Mar 2003 | A1 |
20030060857 | Perrson et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030078623 | Weinberg et al. | Apr 2003 | A1 |
20030078629 | Chen | Apr 2003 | A1 |
20030100924 | Foreman et al. | May 2003 | A1 |
20030105493 | Salo | Jun 2003 | A1 |
20030114905 | Kuzma | Jun 2003 | A1 |
20030125770 | Fuimaono et al. | Jul 2003 | A1 |
20030149450 | Mayberg | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030176818 | Schuler et al. | Sep 2003 | A1 |
20030181951 | Cates | Sep 2003 | A1 |
20030191403 | Zhou et al. | Oct 2003 | A1 |
20030191404 | Klein | Oct 2003 | A1 |
20030195578 | Perron et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030212445 | Weinberg | Nov 2003 | A1 |
20030216790 | Hill et al. | Nov 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030229380 | Adams et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040019364 | Kieval et al. | Jan 2004 | A1 |
20040024422 | Hill et al. | Feb 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040038857 | Tracey | Feb 2004 | A1 |
20040048795 | Ivanova et al. | Mar 2004 | A1 |
20040049120 | Cao et al. | Mar 2004 | A1 |
20040049235 | Deno et al. | Mar 2004 | A1 |
20040054381 | Pastore et al. | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040068299 | Laske et al. | Apr 2004 | A1 |
20040088009 | Degroot | May 2004 | A1 |
20040088015 | Casavant et al. | May 2004 | A1 |
20040111118 | Hill et al. | Jun 2004 | A1 |
20040116970 | Girouard et al. | Jun 2004 | A1 |
20040122496 | Zhang et al. | Jun 2004 | A1 |
20040122497 | Zhang et al. | Jun 2004 | A1 |
20040122498 | Zhang et al. | Jun 2004 | A1 |
20040127942 | Yomtov et al. | Jul 2004 | A1 |
20040127947 | Kim et al. | Jul 2004 | A1 |
20040133248 | Frei et al. | Jul 2004 | A1 |
20040138721 | Osorio et al. | Jul 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040162594 | King | Aug 2004 | A1 |
20040172074 | Yoshihito | Sep 2004 | A1 |
20040172075 | Shafer et al. | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040186517 | Hill et al. | Sep 2004 | A1 |
20040186531 | Jahns et al. | Sep 2004 | A1 |
20040193231 | David et al. | Sep 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20040199210 | Shelchuk | Oct 2004 | A1 |
20040215289 | Fukui | Oct 2004 | A1 |
20040220621 | Zhou et al. | Nov 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040243206 | Tadlock | Dec 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040249429 | Tadlock | Dec 2004 | A1 |
20040254612 | Ezra et al. | Dec 2004 | A1 |
20040254616 | Rossing et al. | Dec 2004 | A1 |
20040260374 | Zhang et al. | Dec 2004 | A1 |
20040260375 | Zhang et al. | Dec 2004 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050015129 | Mische | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050059897 | Snell et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065555 | Er | Mar 2005 | A1 |
20050065562 | Rezai | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050085864 | Schulman et al. | Apr 2005 | A1 |
20050096705 | Pastore et al. | May 2005 | A1 |
20050096707 | Hill et al. | May 2005 | A1 |
20050125044 | Tracey | Jun 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050143412 | Puskas | Jun 2005 | A1 |
20050143779 | Libbus | Jun 2005 | A1 |
20050143785 | Libbus | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149126 | Libbus | Jul 2005 | A1 |
20050149127 | Libbus | Jul 2005 | A1 |
20050149128 | Heil et al. | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149130 | Libbus | Jul 2005 | A1 |
20050149131 | Libbus et al. | Jul 2005 | A1 |
20050149132 | Libbus | Jul 2005 | A1 |
20050149133 | Libbus et al. | Jul 2005 | A1 |
20050149143 | Libbus et al. | Jul 2005 | A1 |
20050149148 | King | Jul 2005 | A1 |
20050149156 | Libbus et al. | Jul 2005 | A1 |
20050154418 | Kieval et al. | Jul 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050187586 | David et al. | Aug 2005 | A1 |
20050197600 | Schuler et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050222632 | Obino | Oct 2005 | A1 |
20050251216 | Hill et al. | Nov 2005 | A1 |
20050261741 | Libbus et al. | Nov 2005 | A1 |
20060074453 | Kieval et al. | Apr 2006 | A1 |
20060079945 | Libbus | Apr 2006 | A1 |
20060089678 | Shalev | Apr 2006 | A1 |
20060106428 | Libbus et al. | May 2006 | A1 |
20060106429 | Libbus et al. | May 2006 | A1 |
20060116737 | Libbus | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060134071 | Ross et al. | Jun 2006 | A1 |
20060134079 | Sih et al. | Jun 2006 | A1 |
20060136027 | Westlund et al. | Jun 2006 | A1 |
20060136028 | Ross et al. | Jun 2006 | A1 |
20060217772 | Libbus et al. | Sep 2006 | A1 |
20060253156 | Pastore et al. | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060271115 | Ben-Ezra et al. | Nov 2006 | A1 |
20060271118 | Libbus et al. | Nov 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20070021790 | Kieval et al. | Jan 2007 | A1 |
20070021792 | Kieval et al. | Jan 2007 | A1 |
20070021796 | Kieval et al. | Jan 2007 | A1 |
20070021797 | Kieval et al. | Jan 2007 | A1 |
20070021798 | Kieval et al. | Jan 2007 | A1 |
20070021799 | Kieval et al. | Jan 2007 | A1 |
20070034261 | Eichler | Feb 2007 | A1 |
20070038259 | Kieval et al. | Feb 2007 | A1 |
20070038260 | Kieval et al. | Feb 2007 | A1 |
20070038261 | Kieval et al. | Feb 2007 | A1 |
20070038262 | Kieval et al. | Feb 2007 | A1 |
20070060972 | Kieval et al. | Mar 2007 | A1 |
20070067008 | Scheiner et al. | Mar 2007 | A1 |
20070068260 | Hong et al. | Mar 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070142864 | Libbus et al. | Jun 2007 | A1 |
20070142871 | Libbus et al. | Jun 2007 | A1 |
20070167984 | Kieval et al. | Jul 2007 | A1 |
20070191904 | Libbus et al. | Aug 2007 | A1 |
20080021507 | Libbus et al. | Jan 2008 | A1 |
20080086174 | Libbus et al. | Apr 2008 | A1 |
20080125843 | Ben-David et al. | May 2008 | A1 |
20080147140 | Ternes et al. | Jun 2008 | A1 |
20080167694 | Bolea et al. | Jul 2008 | A1 |
20080177350 | Kieval et al. | Jul 2008 | A1 |
20080200960 | Libbus | Aug 2008 | A1 |
20080228238 | Libbus | Sep 2008 | A1 |
20090048641 | Libbus | Feb 2009 | A1 |
20090132002 | Kieval | May 2009 | A1 |
20090143834 | Libbus | Jun 2009 | A1 |
20090143838 | Libbus et al. | Jun 2009 | A1 |
20090198294 | Rossing et al. | Aug 2009 | A1 |
20090306734 | Moffitt et al. | Dec 2009 | A1 |
20100076511 | Heil, Jr. et al. | Mar 2010 | A1 |
20100106226 | Libbus | Apr 2010 | A1 |
20100125307 | Pastore et al. | May 2010 | A1 |
20100185255 | Libbus | Jul 2010 | A1 |
20100222832 | Zhang et al. | Sep 2010 | A1 |
20100274321 | Libbus | Oct 2010 | A1 |
20100286740 | Libbus et al. | Nov 2010 | A1 |
20100298898 | Libbus | Nov 2010 | A1 |
20110082514 | Libbus et al. | Apr 2011 | A1 |
20110106216 | Libbus et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
0547734 | Jun 1993 | EP |
1486232 | Dec 2004 | EP |
1541193 | Jun 2005 | EP |
1706177 | Oct 2006 | EP |
1297991 | Nov 1972 | GB |
49015438 | Apr 1974 | JP |
05269210 | Oct 1993 | JP |
2004526471 | Sep 2004 | JP |
2005519680 | Jul 2005 | JP |
2005521489 | Jul 2005 | JP |
WO-9216257 | Apr 1997 | WO |
WO-9713550 | Apr 1997 | WO |
WO-9740885 | Nov 1997 | WO |
WO-0124876 | Apr 2001 | WO |
WO-0176689 | Oct 2001 | WO |
WO-0226314 | Apr 2002 | WO |
WO-0226318 | Apr 2002 | WO |
WO-0226320 | Apr 2002 | WO |
WO-0234327 | May 2002 | WO |
WO-02085448 | Oct 2002 | WO |
WO 03011388 | Feb 2003 | WO |
WO-03026741 | Apr 2003 | WO |
WO-03041559 | May 2003 | WO |
WO-03076008 | Sep 2003 | WO |
WO-03082080 | Oct 2003 | WO |
WO-03082080 | Oct 2003 | WO |
WO-03082403 | Oct 2003 | WO |
WO-03099373 | Dec 2003 | WO |
WO-03099377 | Dec 2003 | WO |
WO-2004012814 | Feb 2004 | WO |
WO-2004084990 | Oct 2004 | WO |
WO-2004084993 | Oct 2004 | WO |
WO-2004103455 | Dec 2004 | WO |
WO-2004105870 | Dec 2004 | WO |
WO-2004110549 | Dec 2004 | WO |
WO-2004110550 | Dec 2004 | WO |
WO-2005018739 | Mar 2005 | WO |
WO-2005042091 | May 2005 | WO |
WO-2005053788 | Jun 2005 | WO |
WO-2005063332 | Jul 2005 | WO |
WO-2005065771 | Jul 2005 | WO |
WO-2005113066 | Dec 2005 | WO |
WO-2006031331 | Mar 2006 | WO |
WO-2007078410 | Jul 2007 | WO |
WO-2008063396 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20050149155 A1 | Jul 2005 | US |