Stimuli-responsive liquid crystal (LC) films have gained interest for various applications, such as decorative purposes, sensors, dynamic interference filters or smart window applications. The liquid crystalline state is called the mesophase and occurs between the crystalline solid state and the isotropic liquid state at distinct temperature ranges. So far, responsive LC systems are based on low molecular weight liquid crystal (LMWLCs) stabilized by an isotropic external polymer matrix or, liquid crystalline (anisotropic) polymer networks using reactive mesogens, which are liquid crystal monomers (RMs) or polymer liquid crystals (PLCs) that form the liquid crystal networks. Mesogens can be seen as disordered solids or ordered liquids showing both solid- and liquid-like properties. LMWLCs are small molecules which are easily switchable, providing a stimulus-responsive LC medium.
For the purpose of this patent application, unless separately defined hereinbefore or elsewhere in this patent application, terms, including abbreviations used herein, have the meaning as defined hereunder.
A disadvantage of LMWLCs is that they are volatile. Therefore these systems are limited to closed cells and not suitable for coating applications. For these applications responsive polymer based LCs would seem appealing as they are non-volatile. RMs can be easily aligned in a three dimensional organization that can be fixed by (photo-) polymerization and the properties can be easily tuned by mixing different RMs in a modular approach. However the responsive properties of these often glassy networks are not large. PLCs such as rubbery polysiloxanes are flexible, which provides a fast and large response to stimuli. However these systems are difficult to align and the responsive properties are difficult to tune.
Surprisingly the limitation of the different classes of responsive LCs can be overcome by the development of a responsive film based on mixtures of PLCs and RMs to create a responsive LC material which appears to be easily alignable. That coating shows a large response of which the properties can be tuned in a modular approach. In this way, the advantages of both materials, PLCs and RMs, were combined, yielding thermally stable films, which can be aligned when desired and which stimuli-responsive properties can be tuned by the choice of RMs. Thus mixtures of PLCs with RMs open the doors to a wide variety of stimuli-responsive coating systems, without the need of time consuming trial-and-error synthesis of PLCs. By choosing chiral RMs, cholesteric coatings can for instance be fabricated, while a light responsive RM could provide a light responsive coating. In addition, one could use similar methods as were used for LMWLCs with RMs in closed cells to prepare for example broadband reflectors or patterned coatings.
The present invention therefore relates to a stimuli-responsive polymer liquid crystal composition for use in stimuli-responsive films or coatings obtained by mixing PLCs and RMs and to a process for preparing the same. Furthermore the present invention relates to responsive devices or products coated with such films or coatings.
These and other aspects of the invention will be apparent from and elucidated further with reference to the embodiments described by way of examples in the following description and with reference to the accompanying figures.
In the article “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers from a binaphthalene crosslinking agent” in Polymer 52 (2011) pages. 5836-5845 published by Elsevier limited, hereinafter ‘the Elsevier article’, wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers (ChLCEs) derived from a binaphthalene crosslinking are described. The robust broadband reflective films may be attractive for reflective displays, brightness enhancement films and smart switchable reflective windows. According to the Elsevier article the polymer network structure of LCEs is usually produced by the introduction of a crosslinking segment into LC polymer systems. The synthesis and characterization of a crosslinking agent containing binaphthalene group, a cholesteric monomer, and the corresponding side chain ChLCEs are described. The Elsevier article describes a process for the preparation of a multi-responsive polymer liquid crystal composition for use in stimuli-responsive films or coatings by mixing a polymer liquid crystal (PLC), i.e. a ChLCEs polymer liquid crystal and a reactive mesogen (RM), i.e. a cholesteric monomer. Thus preparing a stimuli-responsive polymer networks based on PLCs and RMs in a LC cell for use in stimuli-responsive films or coatings is, in itself known from the Elsevier article.
However the choice of the introduction of an RM into an SCLCP, in which one of the components is chiral, by mixing together with some photo inhibitor and surfactant, to prepare a reversible temperature responsive CLC, reflective coating is not known nor can be derived from the Elsevier article. Further the present process exhibits a number of additional features. It shows the possibility to prepare patterned surface topography coatings, as can be done with RMs. The coating was polymerized in the CLC phase with a patterned photomask on top, which blocks the UV light partially and prevent the RMs under the mask to polymerize. Due to depletion of the RMs by photopolymerization, diffusion of RMs from the non-exposed area to the exposed areas takes place resulting in surface topographies with modulated crosslink density. Differences in thermal expansion behaviour for the various areas causes the surface topographies to be temperature responsive. Complex surface topographies could also be made by dual mask exposure. (
The description hereinafter of the claims specifying the exclusive rights on the present invention is deemed to be included in the description of this patent application. These exclusive rights cover also embodiments of the present invention not covered by the explicit wording of the claims but nevertheless forming obvious embodiments of the present invention for a person skilled in the art.
In order to successfully carry out the present invention the following is provided as guidance. Alternative solutions which can be selected without an undue burden for the person skilled in the art, are covered by the present invention.
As an example of the possible systems mentioned hereinabove, a chiral RM was introduced into an achiral SCLCP by mixing (together with some photo initiator and surfactant), to prepare a reversible temperature responsive CLC, reflective coating (
1(C) The reflection decrease relative to the initial value as a function of temperature averaged over two temperature cycles. 1(D) Photographs of the red reflecting coating at 30° C. and 120° C. on a black background.
By reducing the crosslink density of the network by replacing some diacrylates to monoacrylates the network was able to contract when the SCLCP side chains loses their order and blue shift occurred. By storing the coatings several hours at a temperature just below the clearing temperature the SCLCP side chains were able to organize themselves thus the reflection band red shifted to some extent By changing the concentration of chiral RM, the initial reflective wavelength could be tuned as well (
Coatings were prepared on 3×3 cm glass plates, which show a decrease in reflection upon increasing the temperature. (
In addition, coatings with temperature responsive surface topographies on 3×3 cm glass plates were prepared.
So far fast and large responsive, patternable, modular and stable polymer films do not exist. By combining PLCs and RMs it appears to be possible to prepare such polymers.
Using the present process an SCLCP can be embedded in an anisotropic polymer matrix to fabricate a thermally stable coating. This provides a new and easy way to tune the stimuli-responsive properties of SCLCPs over the conventional method of synthesizing SCLCPs with the desired (responsive) properties by trial-and-error. As an example a cholesteric LC RM mixture has been introduced in an achiral SCLCP, resulting in a reversible temperature-responsive coating.
In addition, by mixing RMs with SCLCPs it appears that a facile route can be provided to align SCLCPs using conventional coating methods (e.g. knife coating), which is amongst others necessary for cholesteric reflective coatings. The RM also provides a memory effect for the SCLCP to return to its planar alignment after the stimulus is removed.
Mixing RMs with SCLCPs also opens the possibility to create patterns and gradients in the films. As an example surface topographies with modulated crosslink density using a photo mask during polymerization have been prepared.
A couple of alternatives of stimuli-responsive liquid crystal systems are known, such as micro-encapsulated droplets of cholesteric LMWLC, thermochromic cholesteric LMWLCs in a closed cell environment, or SCLCPs in an external isotropic polymer matrix. The first two are limited to closed systems, while the latter lacks the possibility of cholesteric coatings, since these require alignment. The combination of the advantages of both alternatives has not been found in prior publications.
Number | Date | Country | Kind |
---|---|---|---|
16184490.7 | Aug 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/070836 | 8/17/2017 | WO | 00 |