The present invention relates to a Stirling cooler structure, and more particularly to a Stirling cooler structure having multiple cooling modules. A piezoresistive unit is provided to control a phase difference of movement strokes of passive displacers of multiple Stirling cooling modules, so as to control the cooling effect of the Stirling cooling modules.
Taiwan Patent No. 1539125 discloses a Stirling heating and cooling apparatus, comprising a Stirling engine and at least one cooling module. The Stirling engine includes a cylinder and a piston mounted in the cylinder, and is divided into a first working space and a second working space by a first porous material. The cooling module is divided into a third working space and a fourth working space by a second porous material. The piston separates the second working space from the third working space, which prevents a first working gas used in the Stirling engine from interfering or mixing with a second working gas used in the cooling module and optimizes the performance of the apparatus.
However, the above-mentioned prior art still has the following defects.
1. Referring to
2. The multiple cooling modules are arranged in a straight line. There is no pressure drop control between the Stirling engine and the pipeline of the multiple cooling modules, so the phase difference cannot be controlled.
3. Only one Stirling engine is used as the power source. Limited by the performance of the Stirling engine and the heating temperature, the number of revolutions of the compression part of the Stirling engine cannot be adjusted arbitrarily. Therefore, the temperature of the heat exhaust part of the cooling module cannot be controlled, and the cooling rate is limited. It takes a long time to be cooled to the working temperature when an extremely low temperature environment is required, so it is not suitable for those who need rapid cooling.
4. With the Stirling engine as the power source, the Stirling engine must be driven by a high-temperature heat source for driving multiple cooling modules. If there is no high-temperature heat source, it cannot be operated. Therefore, the conditions are limited, and the cooling modules need to be close to the high-temperature heat source, which affects the temperature in the cooling modules.
According to one aspect of the present invention, a Stirling cooler structure having multiple cooling modules is provided. The Stirling cooler structure comprises at least one power unit, a pipeline, and a plurality of Stirling cooling modules. The power unit includes a cylinder and a piston. The pipeline is connected to the cylinder. The Stirling cooling modules each include a pipe and a passive displacer. The passive displacer is reciprocally, movably disposed in the pipe to partition the pipe into a cold end and a hot end. The hot end is connected to the pipeline. At least one piezoresistive unit is provided on the pipeline. The piezoresistive unit is selectively disposed between the Stirling cooling modules and the cylinder.
The piston is driven to compress air in the cylinder to form a compressed air. The compressed air flows through the pipeline to the hot end and then flows to the cold end through the passive displacer. The cold end absorbs ambient heat so that the compressed air is expanded to flow back to the cylinder through the passive displacer. When the compressed air passes through the piezoresistive unit, a pressure of the compressed air is changed, thereby changing a movement stroke of the passive displacer and a phase difference between the movement strokes of the passive displacers of the Stirling cooling modules. Therefore, by adjusting the pressure drop of the compressed air passing through the piezoresistive unit, the coldness of the cold ends of the respective Stirling cooling modules can be controlled.
Preferably, the piezoresistive unit is one of a valve and a porous member. Preferably, the valve is one of a constant temperature expansion valve, a constant pressure expansion valve and a constant flow expansion valve.
Preferably, the power unit further includes an electric motor, and the electric motor is connected to the piston.
Preferably, the cold ends of the Stirling cooling modules are arranged in a single straight line, multiple straight lines, a radial form, a single circle, multiple circles, or a combination thereof.
Preferably, the cold ends of the Stirling cooling modules are different in size.
According to another aspect of the present invention, a Stirling cooler structure having multiple cooling modules is provided. The Stirling cooler structure comprises at least one power unit, a pipeline, and a plurality of Stirling cooling modules. The power unit includes a cylinder and a piston. The pipeline is connected to the cylinder. The Stirling cooling modules each include a pipe and a passive displacer. The passive displacer is reciprocally, movably disposed in the pipe to partition the pipe into a cold end and a hot end. The hot end is connected to the pipeline. The pipeline has at least one diameter-changing portion. The diameter-changing portion is selectively disposed between the Stirling cooling modules and the cylinder.
The piston is driven to compress air in the cylinder to form a compressed air. The compressed air flows through the pipeline to the hot end and then flows to the cold end through the passive displacer. The cold end absorbs the ambient heat so that the compressed air is expanded to flow back to the cylinder through the passive displacer. When the compressed air passes through the diameter-changing portion, a pressure of the compressed air is changed, thereby changing a movement stroke of the passive displacer and a phase difference between the movement strokes of the passive displacers of the Stirling cooling modules. Therefore, by controlling the diameter of the diameter-changing portion, the pressure drop of the compressed air passing through the diameter-changing portion can be controlled, and the coldness of the cold ends of the respective Stirling cooling modules can be controlled.
Through the above technical features, the following effects can be achieved:
1. The pipeline between the power unit and the multiple Stirling cooling modules is provided with the piezoresistive unit or the diameter-changing portion. By adjusting the fluid pressure of each Stirling cooling module through the corresponding piezoresistive unit or diameter-changing portion, the passive displacer of each Stirling cooling module has a controllable movement stroke, so that each Stirling cooling module has a controllable cooling effect. For example, the passive displacer of each Stirling cooling module can be controlled to have the same movement stroke, so that each Stirling cooling module has a consistent cooling effect.
2. The power unit uses the electric motor to drive the piston, which can freely adjust the number of revolutions of the compression part and control the cooling temperature of the cold end of the Stirling cooling module.
3. The power unit uses the electric motor to drive the piston, thereby overcoming the shortcoming of requiring a high-temperature heat source for operation.
4. The Stirling cooling modules may be arranged in a single straight line, multiple straight lines, a radial form, a single circle, multiple circles, or a combination thereof. The power unit may be arranged in the center of the multiple Stirling cooling modules. The power unit may be plural. Multiple power units can increase the cooling capacity, thereby meeting the required temperature quickly.
5. The Stirling cooling module includes a cold end and a hot end. The cold end is configured to cool the surrounding environment, and the hot end is configured to heat the surrounding environment.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
As shown in
The power unit 1 includes a cylinder 11 and a piston 12. The piston 12 is mounted in the cylinder 11 and has a distance D1 from the bottom dead center of the cylinder 11. In this embodiment, the power unit 1 further includes an electric motor 13. The electric motor 13 is connected to the piston 12 for driving the piston 12 to move in the cylinder 11. The pipeline 2 is connected to the cylinder 11. Each Stirling cooling module 3 includes a pipe 31 and a passive displacer 32. The passive displacer 32 is reciprocally, movably disposed in the pipe 31 to partition the pipe 31 into a cold end 311 and a hot end 312. The hot end 312 is connected to the pipeline 2. The passive displacer 32 is at a distance d1 from the bottom dead center of the cold end 311. The piezoresistive unit 4 is disposed on the pipeline 2, and is selectively disposed between the Stirling cooling modules 3 and the cylinder 11. In this embodiment, the piezoresistive unit 4 is provided between each of the Stirling cooling modules 3 and the cylinder 11. The piezoresistive unit 4 may use, for example, a valve or a porous member. The valve may use, for example, a constant temperature expansion valve, a constant pressure expansion valve or a constant flow expansion valve.
Referring to
It should be particularly noted that when the compressed air enters the pipe 31 of each Stirling cooling module 3, the pressure drop can be adjusted through the piezoresistive unit 4 between each Stirling cooling module 3 and the cylinder 11. When the compressed air enters the hot end 312 of the pipe 31 of each Stirling cooling module 3, it has the same pressure, so that the passive displacer 32 of each Stirling cooling module 3 has a movement stroke that tends to be uniform. For example, when the piston 12 is moved to have a distance D2 from the bottom dead center of the cylinder 11, the passive displacer 32 of each Stirling cooling module 3 is moved to have a distance d2 from the bottom dead center of the opposite cold end 311, thereby changing the phase difference between the movement strokes of the passive displacers 32 of the Stirling cooling modules 3. Thus, the cold end 311 of the pipe 31 of each Stirling cooling module 3 has a cooling effect that tends to be uniform. Alternatively, according to different cooling requirements, different pressure drops are adjusted through the piezoresistive unit 4, so that the cold end 311 of the pipe 31 of each Stirling cooling module 3 has a different cooling effect. That is, in this embodiment, the passive displacer 32 of each Stirling cooling module 3 has a controllable movement stroke, so that the cold end 311 of each Stirling cooling module 3 has a controllable cooling effect. The power unit 1 uses the electric motor 13 to drive the piston 12, so the number of revolutions of the compression part of the cylinder 11 can be adjusted freely. Thus, the temperature of the hot end 312 of the subsequent Stirling cooling module 3 can be controlled to control the cooling capacity of the Stirling cooling module 3.
Referring to
The power unit 1A includes a cylinder 11A and a piston 12A. The piston 12A is mounted in the cylinder 11A. In this embodiment, the power unit 1A further includes an electric motor 13A. The electric motor 13A is connected to the piston 12A. The pipeline 2A is connected to the cylinder 11A. The Stirling cooling modules 3 are connected to the pipeline 2. The second embodiment is substantially similar to the first embodiment with the exceptions described hereinafter. The piezoresistive unit 4 is not provided in the second embodiment. The pipeline 2A has diameter-changing portions 21A, 21B. 21C, 21D connected to the respective Stirling cooling modules 3A. In this embodiment, the pressure of the compressed air entering each Stirling cooling module 3A is controlled according to the diameter-changing portions 21A, 21B, 21C, 21D, so as to control the cooling effect of each Stirling cooling module 3A.
Although particular embodiments of the present invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the present invention. Accordingly, the present invention is not to be limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20020134088 | Rudick | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
I539125 | Nov 2014 | TW |
Entry |
---|
Hsieng, Stirling heating and cooling apparatus, 2014, Full Document (Year: 2014). |
Number | Date | Country | |
---|---|---|---|
20230043596 A1 | Feb 2023 | US |