This application is the U.S. National Phase under 35. U.S.C. § 371 of International Application PCT/SE2018/051351, filed Dec. 20, 2018, which claims priority to Swedish Patent Application No. 1850005-8, filed Jan. 2, 2018. The disclosures of the above-described applications are hereby incorporated by reference in their entirety.
The present invention relates to a Stirling engine comprising:
A regenerator is referred to as an internal heat exchanger and temporary heat store placed between the hot chamber of the displacer cylinder and the working cylinder such that the working fluid passes through it first in one direction then the other, taking heat from the fluid in one direction, and returning it in the other. It can be as simple as metal mesh or foam, and benefits from high surface area, high heat capacity, low conductivity and low flow friction. Its function is to retain within the system the heat that would otherwise be exchanged with the environment at temperatures intermediate to the maximum and minimum cycle temperatures.
External combustion engines of Stirling type are well known. They may be of three different types, which are named alpha, beta and gamma and differ from each other with regard to how the displacer cylinder, working cylinder and the displacer piston and the working piston are arranged in relation to each other and to the crank shaft that is driven by the working piston.
Essential to the function of a Stirling engine is that a working medium is heated by a heater device, preferably by a burner flame in a combustion chamber. During heating thereof, the working gas is conducted through a heat exchanger that may comprise one or more tubes that extend from the hot chamber of the displacer cylinder into the combustion chamber, out of the combustion chamber and towards a regenerator. The regenerator is located outside the combustion chamber and is the individual component that distinguishes Stirling engines from other types of external combustion engines, after the regenerator, as seen in a flow direction of the working gas from the hot chamber of the displacer cylinder to the working cylinder, there may also be provided a cooler.
Accordingly there is provided a channel, comprising the individual channels of the heat exchanger, the regenerator and the cooler, through which the working medium is moved back and forth between the displacer cylinder and the working cylinder during the operation of the engine. Said channel also comprises transition flow elements that are provided between and that interconnect the heat exchanger and the regenerator and the regenerator and the cooler, and that are arranged between the cooler and the working cylinder. One of the big challenges when designing a functioning Stirling engine is to minimize the flow losses in the working gas channel.
It is an object the present invention to present an alternative working gas channel design that combines heat exchange efficiency, including heat regeneration efficiency, with very low flow losses caused by unfavourable flow behaviour of the working gas.
The object of the present invention is achieved by means of the initially defined Stirling engine, which is characterised in that, at any point along the working gas channel, as seen cross wise to an assumed working gas flow direction through the working gas channel, the cross section area of the working gas channel defined by the first, second and third heat exchangers is within the range of the medium cross section area of the working gas channel +/−10%. Tests made by the applicant have shown that reduced variations in the cross-sectional area of the working gas channel will result in less dead volume and in less delay effects. With a substantially constant cross-sectional area, the working gas flow will tend be more laminar and less turbulent due to changes in cross-sectional area, and this is assumed to contribute to a reduction of flow losses.
According to an aspect, the Stirling engine is characterised in that, at any point along the working gas channel, as seen cross wise to an assumed working gas flow direction through the working gas channel, the cross section area of the working gas channel defined by the first, second and third heat exchangers is within the range of the medium cross section area of the working gas channel +/−5%.
According to one example, along at least 95%, preferably 99%, of the total length of the working gas channel, the cross section area of the working gas channel is within the range of the medium cross section area of the working gas channel +/−10%, preferably +/−5%.
According to one example, the first heat exchanger comprises a plurality of tubes, wherein the cross-section area of said working gas channel at any predetermined point along the tubes is the total cross-section area of the individual channels at that point along the channels defined by the tubes. Preferably, the tubes have the same length +/−10%, preferably +/−5%.
According to one example, the regenerator comprises a regenerator element that has an annular body of metal foam. The annular body may be arranged around the outer periphery of the displacer cylinder and is enclosed in an outer ring or cylinder that is gas sealingly arranged on the outer periphery of the regenerator element. According to one example, the metal foam is a Nickel Chromium alloy (NiCr). Metal foam has the advantage of not being compressed when subjected to the pressures and pressure changes in the Stirling engine, as would a fibre-based body be. If a regenerator body is compressed due to the changing pressures that it is subjected to, the cross-sectional area of the channels defined therein is reduced since the density of the body is increased. Accordingly, the use of metal foam contributes to less flow losses due to changes of the cross-sectional area upon operation of the Stirling engine.
According to one example, the third heat exchanger comprises a tubular metallic body provided with a plurality of first channels extending through said metallic body for the conducting of the working gas and at least one second cooling channel for the conducting of a cooling fluid through said cooling channel. The third heat exchanger may be defined as a cooler, configured for active cooling of the working gas flowing through it upon operation of the Stirling engine.
According to one example, the Stirling engine comprises a first transition flow element provided between and connecting the first heat exchanger with the second heat exchanger, wherein said first transition flow element comprises a plurality of channels that each has an inlet having a shape and cross sectional area corresponding to the shape and cross-sectional area of the channel of a tube of the first heat exchanger to which it is connected, and an outlet opening facing said second heat exchanger, and that along at least 75%, preferably 90%, of the length thereof the channels of the transition flow element have a total cross sectional area along which is within the range of the medium cross section area of the working gas channel +/−10%, preferably with the range of +/−5% of said medium cross section area. At the end of each of said channels that is adjacent the second heat exchanger, the cross-section increases such that the total cross sectional area of the openings thereof is generally equal to the total cross-sectional area of the second heat exchanger, as seen cross-wise to the assumed flow direction of the working gas.
According to one example, the cooler comprises a plurality of tubes that each define a channel, wherein the Stirling engine comprises an intermediate element provided between and connecting the second heat exchanger with the third heat exchanger, wherein said intermediate element comprises a plurality of channels that each has an outlet having a shape and cross sectional area corresponding to the shape and cross-sectional area of the channel of a tube of the third heat exchanger to which it is connected, and an inlet opening facing said second heat exchanger, and that along at least 75%, preferably at least 90%, of the length thereof the channels of the transition flow element have a total cross sectional area which is within the range of the medium cross section area of the working gas channel +/−10%. At the end of each of said channels that is adjacent the second heat exchanger, the cross-section increases such that the total cross sectional area of the openings thereof is equal to the total cross-sectional area of the second heat exchanger, as seen cross-wise to the assumed flow direction of the working gas. Thereby, working gas flowing from the working cylinder towards the displacer cylinder in said working gas channel will be prevented from flowing as jet streams through the regenerator as it leaves the cooler. The invention also comprises examples in which the intermediate element is refrained from, wherein an end of the regenerator faces the cooler without any such intermediate element therebetween.
According to one aspect, the Stirling engine comprises a second transition flow element provided between the third heat exchanger and the working cylinder, and that, at any point along the length thereof, the second transition flow element has a total cross sectional area which is within the range of the medium cross section area of the working gas channel +/−10%, preferably within the range of the medium cross section area of the working gas channel +/−5%. According to one aspect, the second transition flow element comprises a tube that defines a single channel that defines part of the working gas channel. According to one aspect, said channel forms at least 90%, preferably at least 95% of the length of the working flow gas channel between the third heat exchanger and the working cylinder.
According to one aspect, the second transition flow element is provided with an flow control element configured to control the cross-sectional area of the channel defined by the second transition flow element, and wherein the cross-sectional area of the working gas channel, at any point along said channel defined by the second transition flow element, is within the range of the medium cross-sectional area of the working gas channel +/−10% when the flow control element is in a position in which it allows maximum passage of working gas.
According to one aspect, the working gas flow control element comprises a flexible tube filled with a gas which is located in a channel defined by second transition flow element. The working gas flow control element may also be defined as a volume control element that controls the volume available for the working gas inside the second transition flow element. As, during operation of the engine, the working piston approaches its upper dead point, the working gas pressure is reduced in the channel defined by the second transition flow element. The working gas flow element thereby expands as a result of its inner gas pressure and fills the channel defined by the second transition flow element. A dead volume occupied by working gas inside the second transition flow element is thereby avoided.
According to one aspect the working gas channel is comprised by the channels defined by the following components (with percentage of total length of working gas channel):
Additional objectives, advantages and novel features of the invention will be apparent to one skilled in the art from the following details, and through exercising the invention. While the invention is described below, it should be apparent that the invention may not be limited to the specifically described details. One skilled in the art, having access to the teachings herein, will recognize additional applications, modifications and incorporations in other areas, which are within the scope of the invention.
For fuller understanding of the present disclosure and further objects and advantages of it, the detailed description set out below should be read together with the accompanying drawings, in which the same reference notations denote similar items in the various diagrams, and in which:
The Stirling engine further comprises a working cylinder 8 with a reciprocatingly arranged working piston 9 therein, said working piston 9 being connected to the crank shaft 2 via a connecting rod 10 extending through a first end of the working cylinder 8. A working cylinder chamber 11 defined by the working cylinder 8 is divided by the working piston 9 into a first part 12, through which said connecting rod 10 extends, and a second part 13 configured to house a working gas during operation of the Stirling engine. The second part 13 of the working cylinder chamber 11 is in fluid communication with the hot chamber 6 of the displacer cylinder 3 for the transportation of the working gas between said second part 13 of the working chamber 11 and the hot chamber 6 of the displacer cylinder 3 during operation of the engine.
To the crank shaft 2 there is connected an electric generator 48, via which electric power can be transferred from the Stirling engine.
A heater device 14 is arranged at a second end of the displacer cylinder opposite to said first end and configured to heat a working gas which is present in the hot chamber 6 of the displacer cylinder 3 and which is in fluid communication with the second part 13 of the working cylinder chamber 11. In the example shown the heater device 14 comprises a combustion chamber 15 which is arranged at the second end of said displacer cylinder 3 opposite to said first end.
Furthermore, the Stirling engine comprises a first heat exchanger 16 and a second heat exchanger 17. The first heat exchanger 16 comprises plurality of tubes 18 that extend from a displacer cylinder head 19 provided at said second end of the displacer cylinder 3 into the combustion chamber 15 and out of the combustion chamber 15 to the second heat exchanger 17. The second heat exchanger 17 is comprised by a regenerator provided outside the combustion chamber 15 and outside the displacer cylinder 3. In the example shown the engine also comprises a third heat exchanger 20 formed by a cooler arranged between the regenerator 17 and the working cylinder chamber 11, a first transition flow element 21 provided between said first and second heat exchangers 16, 17, and a second transition flow element 22 provided between the third heat exchanger 20 and the working cylinder 8. The cooler 20 comprises a body with channels 46 for the conduction of the working gas therethrough and with further channels 47 which form part of a cooling medium circuit.
The hot chamber 6 defined by the displacer cylinder 3 is in fluid communication with a second end, i.e. the above-defined second part 13, of the working cylinder chamber 11 through a channel comprising the first heat exchanger 16, the second heat exchanger 17, the third heat exchanger 20, the first transition flow element 21 and the second transition flow element 22. Though not shown in this example, there may also be provided an intermediate flow element between the second and third heat exchangers 17, 20, wherein such an intermediate element has a design corresponding to the design of the first transition flow element.
Each tube 18 of the first heat exchanger, defines a channel that has a cross-section which is constant along the whole length of the tube 18. The tubes 18 form a pattern that is shown in
The tubes 18 of the first heat exchanger 16 extend to the region of an end wall of the heater device 14 arranged on the outer periphery of the displacer cylinder 3. The second heat exchanger 17 is located outside the heater device 14 in the respect that it is located outside the combustion chamber 15 defined by the heater device 14.
On the opposite side of the second heat exchanger 17, the third heat exchanger 20 is arranged. The third heat exchanger 20 comprises a tubular metallic body provided with a plurality of first channels 46 extending therethrough for the conducting of the working gas and at least one second cooling channel 47 for the conducting of a cooling fluid therethrough.
Between the ends of the tubes 18 of the first heat exchanger 16 and the end of the second heat exchanger 17 that faces said ends there is provided the first transition element flow element 21. Reference is made to
In one end of each of the channels 24, that faces and is connected to a corresponding opposite end of a tube 18 of the first heat exchanger, the channel 24 defines an inlet opening 25. The inlet opening 25 has geometry and cross sectional area corresponding to the geometry and cross sectional area of the cross section of the channel defined by the tube 18. In the opposite end of each channel 24, the channel 24 defines an outlet opening 26. The outlet opening 26 is larger than the inlet opening 25. The outlet openings 26 have tetrahedral shape and are arranged in pairs covering a respective sector of the annular end face of the transition flow element, as is shown in
Along approximately 80% of the length of each channel 24, the channel has geometry and a cross sectional area corresponding to the geometry and cross sectional area of the inlet opening 25. Along the remaining approximately 10% of the length of the channel 24, the channel widens to the geometry and cross sectional area of the outlet opening 26. The curvature of the widening of the channel 24 is adapted to the expected flow characteristics of the working gas, so that the flow of working gas through the widening part of the channel 24 will be in accordance with the Coanda effect. The Coanda effect is defined as the phenomena in which a jet flow attaches itself to a nearby surface and remains attached even when the surface curves away from the initial jet direction. The part of each channel 24 that is widened only occupies less than 1%, preferably less than 0.5%, of the total length of the working gas channel, and therefore only has a minor effect on the flow losses.
The outlet openings 26 of the channels 24 of the transition flow element are distributed over a face of the first transition flow element 21 that confronts an annular end face of the regenerator element 17. An intermediate flow element, corresponding to the first transition flow element 21, could possibly be arranged between the second heat exchanger 17 and the third heat exchanger 20. In such a case, the number of channels defined by the intermediate element should correspond to the number of channels 46 in the third heat exchanger, and the inlet openings of the intermediate element should be connected to a respective of said channels 46 of the third heat exchanger 20.
The second transition flow element 22 comprises a tubular body that extends from the region of an end of the third heat exchanger 20 to the second part 13 of the working cylinder chamber 11. The second transition flow element 22 defines a channel 27 through which the working gas is able of flowing from the region of the end of the third heat exchanger 20 to the working cylinder chamber. Said channel 27 has a cross-sectional area which corresponds to the total cross-sectional area of the channels 46 defined by the third heat exchanger, and also to the cross-sectional area defined by the channels defined by the second heat exchanger 17 and the total cross-sectional area of the channels defined by the tubes 18 of the first heat exchanger 16.
The collapsible body 29 has the shape of a tube having a longitudinal axis which is coaxial with a longitudinal axis of the channel 27 in which it is located. The flow control element 28 also comprises a non-flexible tube 30 which is provided in the centre of the collapsible body 29, and coaxially therewith. The non-flexible tube 30 is rigid enough to withstand an outer pressure from the collapsible body 29 caused by the gas pressure in the latter without collapsing. The non-flexible tube 30 guarantees that there will be a conduit for working gas to flow through from the working cylinder 8 towards the displacer cylinder 3 in said channel 27 irrespectively of how much the collapsible body 29 expands and fills the channel 27 in which it is located. The non-flexible tube 30 is held in position by a holder element 31 that in one end is connected to the tubular body of the transition flow element 22 and in another end is connected to the non-flexible tube 30.
In
When the flow control element 28 is in a position in which it allows maximum passage of working gas, i.e. when it is in its least voluminous state, the cross-sectional area of the channel 27 defined by second transition flow element 22 at any point along the length of the channel 27 is within the range of the medium cross section area of the working gas channel +/−10%, preferably within the range of the medium cross section area of the working gas channel +/−5%.
Between the third heat exchanger 20 and the second transition flow element 22 there is provided a collecting element 44 that defines a channel that has an annular inlet which is connected to the end of the third heat exchanger 20 and that has a circular outlet which is connected to the adjacent end of the channel 27 defined by the second transition flow element. The collecting element 44 will, as a consequence of its design have a larger cross-sectional area than the medium cross-sectional area of the working gas channel, but it only occupies less than 1%, preferably less than 0.5%, of the total length of the working gas channel, and therefore only has a minor effect on the flow losses.
The working gas channel is comprised by the channels defined by the following components (with percentage of total length of working gas channel):
According to an example, the cross-sectional area over the entire working gas channel may be constant within +/−10% in order to obtain a desired laminar flow. The entire working gas channel may extend from the hot chamber at the displacer cylinder head to the second part of the working chamber at the working cylinder head.
The foregoing description of the examples has been furnished for illustrative and descriptive purposes. It is not intended to be exhaustive, or to limit the examples to the variants described. Many modifications and variations will obviously be apparent to one skilled in the art. The examples have been chosen and described in order to best explicate principles and practical applications, and to thereby enable one skilled in the art to understand the examples in terms of its various examples and with the various modifications that are applicable to its intended use. The components and features specified above may, within the framework of the examples, be combined between different examples specified.
Number | Date | Country | Kind |
---|---|---|---|
1850005-8 | Jan 2018 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2018/051351 | 12/20/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/135694 | 7/11/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4969333 | Osawa et al. | Nov 1990 | A |
5417066 | Kawano | May 1995 | A |
5435140 | Ishino et al. | Jul 1995 | A |
5522722 | Kwon | Jun 1996 | A |
5749226 | Bowman et al. | May 1998 | A |
6931848 | Maceda et al. | Aug 2005 | B2 |
Number | Date | Country |
---|---|---|
1239137 | Sep 2002 | EP |
2105787 | Mar 1983 | GB |
2290351 | Dec 1995 | GB |
05-52661 | Jul 1993 | JP |
H07293334 | Nov 1995 | JP |
09-152211 | Jun 1997 | JP |
Entry |
---|
International Search Report for the application No. PCT/SE2018/051351, dated Feb. 14, 2019 in 4 pages. |
Indian Examination Report for Indian Patent Application No. 202047032535, dated Jan. 29, 2021 in 5 pages. |
Number | Date | Country | |
---|---|---|---|
20210054807 A1 | Feb 2021 | US |