The present invention relates generally to power generation. More particularly, the present invention relates to a design for a more efficient Stirling engine.
In the modern world, technology is everywhere. At any given time, a person probably has in their field of view an object that was manufactured at a factory. Computers, cell phones, cars, and even to a large extent the food many people eat has been part of a lengthy production line. Many things are required to produce the finished products we see today, such as manpower and infrastructure, but possibly the most important piece of modern production is power. Many different types of machines are utilized in the manufacturing and packaging of a product, and they all require mechanical work to accomplish their goal. Some machines are entirely mechanical, such as a simple steam engine, but in the modern world most machines depend on electrical components and power to achieve optimal functioning as well. Electrical power is also integral to virtually all aspects of life in developed countries, with applications from refrigerating food to operating televisions, computers, radios, and other appliances, to operating traffic signals, among many others.
Electricity generation is the process of generating electric energy from other forms of energy. The fundamental principle of electricity generation is known as Faraday's law, and it can be used to generate electricity by the movement of a loop of wire or disc of copper between the poles of a magnet. This method of converting mechanical energy into electricity can be utilized in a number of different ways, including utilizing falling water or human power to turn a turbine, using a combustion engine to turn a crank, or using a heat source to power an engine, such as with a type of engine known as a Stirling engine.
In the modern world, it is desirable to discover and develop clean, renewable sources of energy. Of particular interest to many is the harnessing of naturally occurring energy sources. If the energy is there already in one form or another such as motion or radiation, constructing apparatuses to convert such energy into electricity is essentially generating free power, aside from the construction, maintenance and operational costs, since the resource used to generate the power is not one that can be purchased. One such energy source is hydroelectric power, which harnesses the natural motion of water, such as an ocean current or a waterfall, to generate electricity. Another, similar source of “free” energy is wind power. Yet another widely considered option for renewable energy is solar power, which harnesses the energy in sunlight to produce electrical power. Many solar power generation installations utilize photovoltaic technology to convert sunlight into electricity, while others utilize concentrated solar power to provide a heat source for a conventional power plant. One such application utilizes a Stirling engine.
A Stirling engine is a heat engine that operates by cyclic compression and expansion of a working fluid at different temperature levels so that there is a net conversion of heat energy to mechanical work. The Stirling engine is traditionally classified as an external combustion engine like the steam engine since all heat transfers occur through a solid boundary. This contrasts with an internal combustion engine where heat input is by combustion of a fuel within the body of the working fluid. Typical of heat engines, the general cycle consists of compressing cool gas, heating the gas, expanding the hot gas, and finally cooling the gas before repeating the cycle. The efficiency of the process is narrowly restricted by the efficiency of the Carnot cycle, which depends on the temperature difference between the hot and cold reservoir. Advantages of the Stirling engine are that it is highly efficient compared to steam engines, its operation is relatively quiet, and it can easily use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change.
Current Stirling engine designs are subject to cracking of the heater tubes and external regenerator due to high thermal stress. In addition, pumping losses are high. Designing Stirling engine heat exchangers is a balance between high heat transfer with low viscous pumping losses and low dead space, or unswept internal volume. By eliminating the heater tubes, the heat transfer process is more directly associated with the working gas as it dwells in the heater head. By adding an internal regenerator to the displacer piston, the working fluid is utilized more efficiently and unswept volume is reduced. In addition, stresses in the heater head and regenerator assembly are reduced, allowing high temperature ceramics to be utilized, which significantly increases the efficiency of the engine because the efficiency is dependent on the difference in temperature between the hot and cold sections.
In a Stirling engine, the regenerator is an internal heat exchanger and provides temporary heat storage between the hot and cold spaces such that the working fluid passes through it first in one direction and then the other. Its function is to retain heat within the system that would otherwise be exchanged with the environment at temperatures intermediate to the maximum and minimum temperatures, increasing the thermal efficiency of the engine by recycling internal heat which would otherwise be lost.
One application well suited to the present invention is in waste heat recovery. The present invention may use waste heat from other mechanical, electrical or other devices such as another generator or a peak shaver which would otherwise be discarding useful heat energy. Ideally, the present invention would be used for waste heat recovery in continuously running applications.
It is therefore an object of the present invention to provide a Stirling engine displacer piston with an internal regenerator and integral geometry for more efficient heat transfer and fluid flow, ultimately resulting in a more highly efficient Stirling engine.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention is a modification for a Stirling engine which incorporates an internal regenerator and integral geometry for improved heat transfer and fluid flow. Referring to
The cylindrical housing 1 is the substantial physical structure that contains the majority of the present invention as is typical with Stirling engines. The cylindrical housing 1 comprises a piston chamber 11 and contains a working fluid 7. The working fluid 7 is preferably a gas, such as, but not limited to, hydrogen, helium, or air. A central axis 13 centrally traverses through the cylindrical housing 1, and defines a longitudinal direction. The displacer piston 2 is comprises a plurality of cavities 21, the heater head 3 comprises a plurality of heater fin protrusions 31, and the cooling bridge 4 comprises a plurality of tubular cooler fin protrusions 41.
The displacer piston 2 is cylindrical and is concentrically positioned within the piston chamber 11 of the cylindrical housing 1 between the heater head 3 and the cooling bridge 4. Each of the plurality of cavities 21 is oriented parallel to the central axis 13 and fully traverses through the displacer piston 2. As seen in
As seen in
In one embodiment of the present invention, each of the plurality of regenerator cores 5 is made of thin, highly convoluted, compressed metal wire, similar to steel wool. This allows the plurality of regenerator cores 5 to maximize surface area available to receive and store heat energy while remaining porous. In one embodiment of the present invention, the displacer piston 2 is made with the plurality of regenerator cores 5 being positioned within the plurality of cavities 21 during manufacture. In an alternate embodiment of the present invention, the plurality of regenerator cores 5 is positioned within the plurality of cavities 21 by pressing an amount of regenerator core material into each of the plurality of cavities 21 from one opening of the fin cavity. In another alternate embodiment, two halves of the displacer piston 2 are brought together to sandwich a disc of regenerator core material between the two halves.
The heater head 3 is concentrically positioned with the cylindrical housing 1 and traverses into the piston chamber 11 along the central axis 13. In one embodiment of the present invention, the heater head 3 itself is a physically separate component which is affixed to the cylindrical housing 1 by a cylindrical flange interface 19 between the heater head 3 and the cylindrical housing 1. A bolt pattern is radially spaced out around the cylindrical axis on the cylindrical flange interface 19, through which a plurality of bolts may be affixed in order to attach the heater head 3 to the cylindrical housing 1.
As can be seen in
It is desirable for the plurality of heater fin protrusions to be highly thermally conductive to facilitate efficient transfer of heat from the heat source outside of the cylindrical housing to the working fluid inside the cylindrical housing. Therefore, in one embodiment shown in
The cooling bridge 4 is concentrically positioned within the cylindrical housing 1 opposite the heater head 3 along the piston chamber 11. Similarly to the plurality of heater fin protrusions 31, each of the plurality of tubular cooler fin protrusions 41 is oriented parallel to the central axis 13. The plurality of tubular cooler fin protrusions 41 is arranged to match the specific cross sectional geometry 6 such that the plurality of tubular cooler fin protrusions 41, having a positive geometry, may interface with the plurality of cavities 21, which have negative geometry, so that the plurality of tubular cooler fin protrusions 41 may be enveloped by the plurality of cavities 21 by moving the displacer piston 2 along the central axis 13. In one embodiment of the present invention, each of the plurality of tubular cooler fin protrusions 41 is hollow to allow working fluid 7 to pass through.
The displacer piston 2 and the cylindrical housing 1 are dimensioned such that there is only a small gap between the displacer piston 2 and the cylindrical housing 1. The displacer piston 2 oscillates between the heater head 3 and the cooling bridge 4 and alternatingly displaces the working fluid 7 between the heater head 3 and the cooling bridge 4. The plurality of cavities 21 alternatingly envelops the plurality of heater fin protrusions 31 and the plurality of tubular cooler fin protrusions 41 as the displacer piston 2 moves between the heater head 3 and the cooling bridge 4. When the fin cavities of the displacer piston 2 are enveloping the plurality of heater fin protrusions 31 of the heater head 3, the majority of the working fluid 7 is displaced away from the heater head 3, towards the cooling bridge 4, and the cooling bridge 4 cools the working fluid 7, causing the pressure of the working fluid 7 to drop. When the plurality of cavities 21 of the displacer piston 2 are enveloping the plurality of tubular cooler fin protrusions 41 of the cooling bridge 4, the working fluid 7 is displaced towards the heater head 3, where the working fluid 7 is heated by the heater head 3, causing the pressure of the working fluid 7 to rise.
In one embodiment of the present invention, the displacer piston 2 is connected to a crank mechanism according to a beta type Stirling engine design. In one embodiment of the present invention, however, the displacer piston 2 is a free piston design. The following is a description of the preferred free piston embodiment.
In one embodiment, the present invention further comprises a ferrous or magnetic material 8, an electrically conductive coil 9, and a spring 16. The ferrous or magnetic material 8 is integrated into the displacer piston 2, preferably close to the circumference of the displacer piston 2. The electrically conductive coil 9 is wrapped around the cylindrical housing 1. The electrically conductive coil 9 is electrically connected to an electronic control system 10. The electronic control system 10 controls electronic current flow through the electrically conductive coil 9 in order to produce an electromagnetic field, creating a force in the ferrous or magnetic material 8 and thus moving the displacer piston 2. This arrangement is similar to the function of a solenoid.
The spring 16 is connected between the displacer piston 2 and a spring annulus 17. The spring annulus 17 is positioned concentrically within the cylindrical housing 1, opposite the heater head 3 along the cylindrical housing 1. In one embodiment, the cooling bridge 4 is positioned between the displacer piston 2 and the spring annulus 17 and there is a concentric gap between the cooling bridge 4 and the cylindrical housing 1, so that the spring 16 encircles the cooling bridge 4.
The displacer piston 2 requires physical support to hold the displacer piston 2 in the correct concentric position within the cylindrical housing 1. To this end, the cylindrical housing 1 further comprises a plurality of roller tracks 14, wherein each of the plurality of roller tracks 14 is oriented parallel to the central axis 13. The plurality of roller tracks 14 is radially distributed around the central axis 13 within the cylindrical housing 1. The displacer piston 2 further comprises a plurality of rollers 22. The plurality of rollers 22 is similarly radially distributed around the central axis 13 on the displacer piston 2, so that the plurality of rollers 22 are engaged to the plurality of roller tracks 14, wherein the plurality of rollers 22 roll within the plurality of roller tracks 14 in a direction parallel to the central axis 13. As the displacer piston 2 moves longitudinally within the cylindrical housing 1, the plurality of rollers 22 and the plurality of roller tracks 14 ensure that the displacer piston 2 stays concentric with the cylindrical housing 1 and does not rotate.
As seen in
The cylindrical housing 1 further comprises an annular coolant chamber 15 and a working fluid chamber 12. The cooling bridge 4 is positioned between the piston chamber 11 and the working fluid chamber 12. The cooling bridge 4 further comprises a first circular plate 42 and a second circular plate 43. The first circular plate 42 and the second circular plate 43 are concentrically positioned within the cylindrical housing 1.
The first circular plate 42 and the second circular plate 43 are spaced apart from each other along the central axis 13. A cooling space 44 is defined by all empty space between the first circular plate 42 and the second circular plate 43. The plurality of tubular cooler fin protrusions 41 traverses through the first circular plate 42 and the second circular plate 43. As a result, the working fluid 7 may pass through the plurality of tubular cooler fin protrusions 41 so that the working fluid chamber 12 is in fluid communication with the piston chamber 11 through the plurality of tubular cooler fin protrusions 41. The annular coolant chamber 15 is concentrically positioned around the working fluid chamber 12 and is separated from the working fluid chamber 12 so that the coolant fluid 18 and the working fluid 7 are not allowed to mix. The annular coolant chamber 15 comprises a coolant ingress 151 and a coolant egress 152. The coolant ingress 151 is in fluid communication with the coolant egress 152 through the cooling space 44. Coolant flows into the coolant ingress 151 and through the cooling space 44, and heat transfer occurs between the working fluid 7 within the plurality of tubular cooler fin protrusions 41. The coolant fluid 18 should always be at a lower temperature than the working fluid 7, so that the cooling bridge 4 is constantly cooling the working fluid 7 similarly to how the heater head 3 is constantly heating the working fluid 7.
Referring to
In one embodiment, the spring 16 is integrated into the bellows assembly 200, with the spring being wound within the bellows assembly 200 from the first end 210 to the second end 220 of the bellows assembly 200. Similarly, in one embodiment, the electrically conductive coil is wound within the bellows assembly 200 from the first end 210 to the second end 220. In various embodiments, the spring, the electrically conductive coil, or both, may be integrated into or within the bellows assembly 200 in any conceivable manner, or embodied as separate components that are attached, connected, placed adjacent to or otherwise arranged together with, within, or around the bellows assembly 200, or in any other means, in order to facilitate adequate movement of the displacer piston within the cylindrical housing. Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The current application is a continuation-in-part (CIP) application of the U.S. non-provisional application Ser. No. 13/949,795 filed on Jul. 24, 2013. The U.S. non-provisional application Ser. No. 13/949,795 claims a priority to a U.S. provisional application Ser. No. 61/675,106 filed on Jul. 24, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2045118 | Brown | Jun 1936 | A |
3405521 | Kelly | Oct 1968 | A |
3407593 | Kelly | Oct 1968 | A |
3508393 | Kelly | Apr 1970 | A |
3523427 | Simpson | Aug 1970 | A |
3579980 | Kelly | May 1971 | A |
3583155 | Schuman | Jun 1971 | A |
3638420 | Kelly | Feb 1972 | A |
3807904 | Schuman | Apr 1974 | A |
4188791 | Mulder | Feb 1980 | A |
4446698 | Benson | May 1984 | A |
4511805 | Boy-Marcotte | Apr 1985 | A |
9382873 | Holsapple | Jul 2016 | B2 |
20040141291 | Chen | Jul 2004 | A1 |
20110239640 | Charlat | Oct 2011 | A1 |
20120073284 | Chen | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
3006929 | Oct 1981 | DE |
62126249 | Jun 1987 | JP |
06159836 | Jun 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20160281638 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61675106 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13949795 | Jul 2013 | US |
Child | 15177329 | US |