Priority is claimed to Japanese Patent Application No. 2014-62413, filed on Mar. 25, 2014, the entire content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a refrigerator and in particular relates to a Stirling refrigerator including a regenerator.
2. Description of the Related Art
There are available many types of cryogenic refrigerators that produce cryogenic temperatures. One of such cryogenic refrigerators is a Stirling refrigerator. As compared with other cryogenic refrigerators such as a Gifford-MacMahon (GM) refrigerator, the Stirling refrigerator has a feature where the downsizing is easier. Similar to the GM refrigerator, a natural medium such as helium gas or the like is used as a working gas and therefore the Stirling refrigerator is an environmentally-friendly cryocooler.
One exemplary purpose of an aspect of the present invention is to provide a technology for mitigating or preventing a decrease of the refrigeration capacity of a Stirling refrigerator having a regenerator.
According to an embodiment of the present invention, a Stirling refrigerator includes: a regenerator including a low-temperature end and a high-temperature end; and a heat exchanger on which a plurality of protrusions in thermal contact with the low-temperature end of the regenerator are formed. One or more recesses are formed between the protrusions on the heat exchanger, each recess forming a flowing groove through which a working gas flows.
Optional combinations of the aforementioned constituting elements, and implementations of the invention in the form of methods, apparatuses, systems, and so forth may also be practiced as additional modes of the present invention.
Embodiments will now be described, by way of example only, with reference to the accompanying drawings, which are meant to be exemplary, not limiting, and wherein like elements are numbered alike in several figures, in which:
The invention will now be described by reference to the preferred embodiments. This does not intend to limit the scope of the present invention, but to exemplify the invention.
Among Stirling refrigerators, there is a Stirling refrigerator that includes a regenerator. The regenerator contains a regenerator material comprised of metal meshes and the like, and accumulates the coldness produced by a working gas. The regenerator is provided in a position adjacent to a heat exchanger. There are cases where a hollow support member is inserted between the regenerator and the heat exchanger, which is used to form a gap or space therebetween. This is because of not only allowing a cold working gas, which has passed through the heat exchanger, to uniformly cool the regenerator material and but also mitigating or preventing the metal meshes, which are the regenerator material, from being warped or deformed by its own weight and/or by the working gas passing therethrough.
However, the gap formed between the regenerator and the heat exchanger may possibly increase the thermal resistance between the regenerator and the cooled object and thereby deteriorate the refrigerating performance of the refrigerator. In the light of this, a Stirling refrigerator according to an embodiment of the present invention includes a heat exchanger having an external surface with a plurality of protrusions in thermal contact with a low-temperature end of the regenerator.
A detailed description will be hereinafter given of embodiments by which to carry out the present invention, with reference to the accompanying drawings. The same or equivalent constituents in explaining the drawings will be denoted with the same reference numerals, and the repeated description thereof will be omitted as appropriate. Moreover, the embodiments given hereinbelow are for illustrative purposes only and does not limit the scope of the present invention.
The compressor 11 includes a compressor casing 14. The compressor casing 14 is a pressure vessel that is so configured as to hermetically hold a high-pressure working gas. The working gas as used herein may be helium gas, for instance. Also, the compressor 11 includes a compressor unit that is contained in the compressor casing 14. The compressor unit has a compressor piston and a compressor cylinder, one of which is a movable member 15 configured to reciprocate inside the compressor casing 14 and the other of which is a static member secured to the compressor casing 14. The compressor unit has a drive source used to move the movable member 15 relative to the compressor casing 14 in a direction along a central shaft of the movable member 15. The compressor 11 includes a support 16 that supports the movable member 15 relative to the compressor casing 14 so that the movable member 15 can move in a reciprocating manner. The movable member 15 vibrates relative to the compressor casing 14 and the static member with certain amplitude and frequency. As a result, the volume of the working gas inside the compressor 11 also vibrates with predetermined amplitude and frequency.
A working gas chamber is formed between the compressor piston and the compressor cylinder. The working gas chamber is connected to one end of the connecting pipe 12 through a communicating path formed in the aforementioned static member and the aforementioned compressor casing 14. The other end of the connecting pipe 12 is connected to a working gas chamber of the expander 13. In this manner, the working gas chamber of the compressor 11 is connected to the working gas chamber of the expander 13 by the connecting pipe 12.
As will be described later by reference to
The expander 13 includes the expander body 20 and the displacer 22. The expander body 20 is a pressure vessel that is so configured as to hermetically hold a high-pressure working gas. The displacer 22 is a movable member that is so configured as to reciprocate inside the expander body 20. Also, the expander 13 includes at least one support 40 that supports the displacer 22 relative to the expander body 20 so that the displacer 22 can move in a reciprocating manner.
The expander body 20 includes a first section 24 and a second section 26. The first section 24 includes an expansion space 28, for the working gas, which is formed between the expander body 20 and the displacer 22. A cooling stage 29, which is used to cool an object, is provided in the part of the expansion body 20 adjacent to the expansion space 28. The second section 26 is configured such that the displacer 22 is supported relative to the expansion body 20 by way of an elastic member 30.
The second section 26 is located adjacent to the first section 24 in a reciprocating direction of the displacer 22 (indicated by a double arrow C in
The displacer 22 includes a displacer body 32, which is contained in the first section 24, and a displacer rod 34. The displacer rod 34 is a shaft part, which is narrower than the displacer body 32. The displacer 22 has a central axis parallel with the reciprocating direction of the displacer 22, and the displacer body 32 and the displacer rod 34 are provided coaxially with the central axis. The displacer 22 has an internal space and is filled with a gas, which is the same kind as the working gas.
The displacer rod 34 extends from the displacer body 32 to the second section 26 by passing through the sealing portion 25. The displacer rod 34 is supported by the expander body 20 in the second section 26 in such a manner as to enable the reciprocating movement of displacer 22. The aforementioned sealing portion 25 may be a rod seal formed between the displacer rod 34 and the expander body 20.
The first section 24 forms a cylinder portion that surrounds the displacer body 32. The expansion space 28 is formed between a bottom face of the cylinder portion and an end face of the displacer body 32. The expansion space 28 is formed on a side opposite to a joint part of the displacer body 32 and the displacer rod 34, in the reciprocating direction C of the displacer 22. A gas space 36, which is connected to the connecting pipe 12, is formed between the joint part and the sealing portion 25.
A regenerator 38 is mounted on a side surface of the cylinder portion of the expander body 20 such that the regenerator 38 is positioned around a periphery of the displacer body 32. More specifically, the regenerator 38 is provided on the side surface of the cylinder portion of the expander body 20 such that the regenerator 38 is arranged around the periphery of the displacer body 32 to form a cylindrically-shaped region, whose central axis coincides with the longitudinal axis of the displacer 22. The regenerator 38 is of a stacking structure of metal meshes, for instance. The working gas can flow between the expansion space 28 and the gas space 36, by way of the regenerator 38.
A water-cooled heat exchanger 37 is provided between the regenerator 38 and the gas space 36. The water-cooled heat exchanger 37 performs a heat exchange operation in which the working gas supplied from the compressor 11 is cooled and then the heat thereof is released outside the expander 13. A low-temperature heat exchanger 39 is placed between the regenerator 38 and the cooling stage 29. In the Stirling refrigerator according to the present embodiment, the cooling stage 29 and the low-temperature heat exchanger 39 are structured integrally with each other. For convenience of explanation, a description is hereunder given in a manner such that the cooling stage 29 and the low-temperature heat exchanger 39 are separate elements. The low-temperature heat exchanger 39 will be discussed later in detail.
The expander 13 supports the displacer 22 relative to the expander body 20, at a plurality of positions in the reciprocating direction of the displacer 22, in such a manner as to enable the reciprocating movement of displacer 22. For this purpose, the expander 13 includes two supports 40. The two supports 40 are provided in the second section 26. In this manner, the tilting of the displacer 22 against the central axis can be suppressed.
Each support 40 has the aforementioned elastic member 30. The elastic member 30 is arranged between the displacer rod 34 and the expander body 20 such that an elastic restoring force is exerted on the displacer 22 when the displacer 22 is displaced from its neutral position. Thereby, the displacer 22 makes a reciprocating movement with a natural frequency. This natural frequency is determined by a spring constant of the elastic member 30, a spring constant resulting from the pressure of the working gas, and the weight of the displacer 22. The displacer rod 34 is secured to the elastic member 30 by way of an elastic member mounting portion 51.
The elastic member 30 includes, for example, a spring mechanism having at least one plate spring. The plate spring, which is also called a flexure spring, is flexible in the reciprocating direction of the displacer 22 and is rigid in a direction perpendicular to the reciprocating direction. Such a plate spring is disclosed, for example, in Japanese Patent Application Publication No. 2008-215440, the entire content of which is incorporated herein by reference. Thus, the elastic member 30 permits the movement of the displacer 22 in a direction along the central axis of the displacer 22 but restricts the movement thereof in a direction perpendicular thereto.
As described above, a vibration system comprised of the displacer 22 and the elastic member 30 is constructed. The vibration system is configured such that the displacer 22 vibrates with the same frequency as that of the movable member 15 of the compressor 11 with having a certain phase difference between these vibrations. The displacer 22 is driven by a pulsing motion caused by the pressure of the working gas generated by the vibration of the movable member 15 of the compressor 11. The reciprocating motions of the displacer 22 and the movable member 15 of the compressor 11 form a reverse Stirling cycle in between the expansion space 28 and the working gas chamber of the compressor 11. In this manner, the cooling stage 29 located adjacent to the expansion space 28 is cooled, so that the Stirling refrigerator can cool the object.
A detailed description is now given of the low-temperature heat exchanger 39 according to an embodiment.
The gas, which has passed from the compressor 11 through the connecting pipe 12 to the gas space 36, reaches the low-temperature heat exchanger 39 while the gas is cooled by the regenerator material of the regenerator 38. A plurality of protrusions 39a, which thermally contact with the regenerator 38, are formed on the low-temperature heat exchanger 39. Also, a plurality of recesses 39b are each formed between the adjacent protrusions 39a of the low-temperature heat exchanger 39, and each of the recesses 39b forms a flowing groove through which the working gas flows.
Since the low-temperature heat exchanger 39 has an annular shape, the protrusions 39a are annularly shaped as well. As a result, the recesses 39b are also annularly shaped. Note here that the low-temperature heat exchanger 39 according to an embodiment has a plurality of additional recesses 39b along a radial direction of the annular shape, i.e., a direction perpendicular to the annular recesses 39b. The working gas, which has reached the low-temperature heat exchanger 39 through the regenerator 38, now enters the flowing grooves formed by the recesses 39b. The working gas flowing along the flowing grooves passes through the additional recesses 39b, which extend in the radial direction of the low-temperature heat exchanger 39, and finally reaches the expansion space 28. Thus, the shape of the protrusion 39a formed on the low-temperature heat exchanger 39 can be thought of as being a discontinuing annular or circular shape having sub-protrusions arranged alternate with the radially extending grooves.
The reciprocating movement of the displacer 22 causes expansion of the working gas in the expansion space 28 and thereby produces the cold. The working gas, which has become colder, returns to the regenerator 38 through the recesses 39b of the low-temperature heat exchanger 39 and again reaches the gas space 36 while the cold working gas cools the regenerator material. This causes a temperature drop at an end of the regenerator 38 on a low-temperature heat exchanger 39 side relative to the temperature at the opposite end on a gas space 36 side. Accordingly, the end of the regenerator 38 on the low-temperature heat exchanger 39 side can be referred to as a low-temperature end of the regenerator 38. The end of the regenerator 38 on the gas space 36 side can be referred to as a high-temperature end of the regenerator 38.
As illustrated in
As shown in
However, the low-temperature heat exchanger 39 according to the comparative example is configured such that the distance between the cooled object and the low-temperature end of the regenerator 38 is longer than that of the low-temperature heat exchanger 39 according to the present embodiment. The thermal resistance in the low-temperature heat exchanger 39 according to the comparative example, is larger than that of the low-temperature heat exchanger 39 according to the present embodiment. This leads to a drop in the heat-exchange efficiency.
In contrast, the low-temperature heat exchanger 39 according to the present embodiment is not only configured such that the low-temperature heat exchanger 39 itself has the flowing paths for the working gas but also has a function of supporting the regenerator material of the regenerator 38. Thus, the distance between the cooled object and the regenerator 38 is reduced and are located closer to each other, compared with the low-temperature heat exchanger 39 according to the comparative example. Accordingly, the thermal resistance between the regenerator 38 and the cooled object is reduced so that the refrigeration capacity can be enhanced. Also, the low-temperature heat exchanger 39 according to the present embodiment does not have the gap as in the low-temperature heat exchanger 39 according to the comparative example. Thus, the dead volume becomes small, which contributes to improving the refrigerating capacity.
As described above, a description has been made so far on the assumption that the low-temperature heat exchanger 39 is in direct contact with the low-temperature end of the regenerator 38. Instead, a support member for supporting the regenerator material may be provided between the low-temperature heat exchanger 39 and the regenerator 38.
As shown in
It is noted here that the support member 42 is preferably a plate or thin member for the purpose that the distance between the low-temperature heat exchanger 39 and the regenerator 38 is smaller so as to bring them closer to each other. Also, in order to suppress or minimize the pressure loss, the passage resistance of the working gas is preferably small. For this reason, the support member 42 may be implemented with a metal mesh having mesh openings of about 1 to 2 mm (#16), for example.
As described above, the Stirling refrigerator 10 according to an embodiment of the present invention provides the technology for mitigating a decrease of the refrigeration capacity of the Stirling refrigerator 10 having a regenerator. Since, in particular, the regenerator material of the regenerator 38 is firmly held by using the protrusions 39a, which constitute a part of the low-temperature heat exchanger 39, the distance between the low-temperature heat exchanger 39 and the regenerator 38 is small so as to bring them closer to each other and therefore the thermal resistance can be reduced. Thereby, the decrease of the refrigeration capacity of the Stirling refrigerator 10 can be mitigated. Also, the warping of the regenerator material of the regenerator 38 can be prevented.
The present invention has been described based on the exemplary embodiments and such description is for illustrative purposes only. It is understood by those skilled in the art that various changes in design and the like are possible and that such modifications arising from the changes are also within the scope of the present invention.
In the above-described embodiments, a description has been given on the assumption that the Stirling refrigerator 10 is an annular type Stirling refrigerator where the regenerator 38 is positioned in a cylindrically-shaped region whose central axis coincides with the longitudinal axis of the displacer 22. Nevertheless, the embodiments of the present invention is also applicable to a pulse tube Stirling refrigerator having no displacer 22.
As described above, the regenerator 38 of the annular type Stirling refrigerant 10 is of a cylindrical shape having a thick wall, and the cross section in a plane perpendicular to the longitudinal axis is of an annular shape. In contrast thereto, a regenerator of the pulse type Stirling refrigerator is of a columnar shape, and the cross section in the plane perpendicular to the longitudinal axis is a disk (circular plate), which is a difference from the regenerator 38 of the annular type Stirling refrigerant 10. Otherwise, the regenerator 38 of the pulse tube Stirling refrigerant may be configured similarly to the regenerator of the annular type Stirling refrigerator 10.
Thus, when the embodiments of the present invention are applied to the pulse tube Stirling refrigerator, the low-temperature heat exchanger is disk-shaped. In this case, a plurality of protrusions are formed on the surface of the disk-shaped low-temperature heat exchanger in thermal contact with the disk-shaped low-temperature end of the regenerator to form recesses, as flowing paths for the working gas, between the adjacent protrusions. With this structure and arrangement in this case, the embodiments of the present invention are applicable to the pulse tube Stirling refrigerator. As a result, in the case of the pulse tube Stirling refrigerator, the protrusions formed on the low-temperature heat exchanger are annularly or circularly shaped as well.
In the above-described embodiments, a description has been given of the case where the refrigerator is the Stirling refrigerator but the embodiments of the present invention are also applicable to a GM refrigerator and a Solvay refrigerator.
In the above-described embodiments, a description has been given mainly of the low-temperature heat exchanger 39 that thermally contacts with the low-temperature end of the regenerator 38. The embodiments of the present invention, however, are also applicable to a high-temperature heat exchanger of a refrigerator that includes the high-temperature heat exchanger thermally contacting with the high-temperature end of the regenerator 38.
It should be understood that the invention is not limited to the above-described embodiment, but may be modified into various forms on the basis of the spirit of the invention. Additionally, the modifications are included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-062413 | Mar 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6131644 | Kohara | Oct 2000 | A |
20060179835 | Qiu | Aug 2006 | A1 |
20070033935 | Carroll | Feb 2007 | A1 |
20120247143 | Matsubara | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2000-292022 | Oct 2000 | JP |
2002-039639 | Feb 2002 | JP |
2007-085641 | Apr 2007 | JP |
2007-303721 | Nov 2007 | JP |
2008-215440 | Sep 2008 | JP |
2011-027272 | Feb 2011 | JP |
2012-220044 | Nov 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20150276272 A1 | Oct 2015 | US |