The present invention relates to a stirrer, especially relates to improvement of a stirrer to be used for emulsification, dispersion, or mixing of a fluid to be processed.
Various stirrers have been proposed for emulsification, dispersion, or mixing of a fluid, and today it is requested that a fluid to be processed which contains a material having a small particle diameter such as a nanoparticle is processed sufficiently well.
For example, a bead mill and a homogenizer are known as examples among many stirrers widely known.
In a bead mill, however, performance deterioration due to destruction and damage of a crystal condition of particle's surface has been a problem. Another significant problem is that a foreign matter is generated. In a high pressure homogenizer, problems relating to stable operation and requirement of a significantly large energy are yet to be solved.
A rotary homogenizer has been used as a pre-mixer in the past; but this requires a finishing machine to accomplish dispersion and emulsification to a nanometer level.
(With Regard to Patent Documents)
In view of the above situation, inventors of the present invention proposed the stirrer shown in Patent Documents 1 to 3. This stirrer is equipped with a rotor having plural blades and a screen having plural slits which is arranged around the rotor. The rotor and the screen rotate relative to each other, whereby shearing a fluid to be processed in a very narrow space formed between the blades and the inner wall of the screen which has slits so that the fluid to be processed is discharged from inside the screen toward outside thereof through the slits as an intermittent jet flow.
In the stirrer like this, as shown in the columns of Background Art of Patent Document 2, the stirring condition thereof has been changed by adjusting the rotation number of the impeller (namely the rotor). In the invention according to Patent Document 2, the proposal was made as to the stirrer in which the clearance between the edge of the impeller and the inner wall of the screen can be selected arbitrarily, whereby intending to optimize the capacity improvement in accordance with the fluid to be processed. In Patent Document 3, by increasing the frequency Z (kHz) of the intermittent jet flow above specific value, it was found that the effect to make particles finer was drastically enhanced; and based on this finding, the invention could be completed as to the stirrer that enabled to make the particles finer in the region which could not be achieved by conventional stirrers.
In all of these Patent Documents, the inventions were made by changing the clearance between the screen and the inner wall or by changing the frequency Z (kHz) of the intermittent jet flow, wherein these changes were made under a certain condition of the width of the edge of the rotor's blade in a circumferential direction and the width of the slits in a circumferential direction (specifically, under the fixed condition where the both widths are almost the same or the width of the edge of the rotor's blade is slightly larger than the width of the slits).
From the development work having been made so far by the applicant of the present invention, it is known that emulsification, dispersion, or mixing can be made by a liquid-liquid shear force in the velocity interface generated by the intermittent jet flow; and thus, it is presumed that this liquid-liquid shear force can effectively act so as to realize refinement of a fluid to be processed, especially to realize very fine dispersion and emulsification such as nano-level dispersion and emulsification; however, the action thereof is not yet fully elucidated until today.
(Historical Aspect of the Present Invention)
Inventors of the present invention tried to realize finer dispersion or emulsification by facilitating refinement of a fluid to be processed by the device shown in Patent Documents 1 to 3. Firstly, because shearing of a fluid to be processed occurs in a minute clearance between the blade and the inner wall of the screen having slits, it was presumed that to increase the number of shearing per unit time is effective to increase efficiency of the shearing; and thus, investigation was carried out from the viewpoint to increase the number of shearing per unit time.
As the means to realize this, as shown in these Patent Documents, to change the number of rotor's rotation (circumferential rotation velocity of the blade's edge portion) is known; however, under the condition of constant rotor's rotation number (circumferential rotation velocity of the blade's edge portion), it is presumed that to increase the number of the slits by narrowing the slits' width or to increase the number of the rotor's blades is effective.
However, in the case of generating the intermittent jet flow, if the slit's width is made too wide, a pressure of the fluid to be processed that goes through the slit decreases, on the other hand, if the slit's width is made too narrow, a flow amount of the fluid to be processed that goes through the slit decreases; and thus, there is a fear that the intermittent jet flow may not be generated favorably. As a result, there is a limit in the method wherein the slit's width is made narrow so as to increase the number of slit.
On the other hand, in the case of studying to increase the number of the rotor's blade, if the number of the rotor's blade is increased with keeping the blade's width unchanged, the space volume among the blades decreases, resulting in decrease of the amount of the fluid to be processed that is ejected by the blade, thereby suggesting that in order to increase the number of the blade, narrowing of the blade's width may be effective. On the contrary to the expectation, however, when the test was conducted to increase the number of the blade with narrowing the blade's width, refinement of the fluid to be processed could not be facilitated.
Therefore, we focused not on the increase of the number of shearing per unit time but on the liquid-liquid shear force due to the intermittent jet flow; and thus, facilitation of refinement of the fluid to be processed was studied by increasing this shear force.
The result of the study of the generation mechanism of the liquid-liquid shear force due to this intermittent jet flow will be explained hereunder with referring to
As a result of further study, it became clear that the pressure of the fluid to be processed is decreased in the back side of the rotational direction of the blade 12 so that it causes a phenomenon that the fluid to be processed is sucked from the slit 18 which is located in the back side thereof. As a result, the inventors reached the idea that outside the screen 9, the intermittent jet flow of the fluid to be processed from the slit 18 is not merely ejected to the fluid to be processed that is in a static state, but a forward flow and a backward flow (ejection flow and suction flow) are generated to cause the relative difference in the velocities in the interface of the both flows thereby generating the liquid-liquid shear force between the fluids to be processed.
On the basis of this idea, the conventional examples shown in
Patent Document 1: Japanese Patent No. 2813673.
Patent Document 2: Japanese Patent No. 3123556.
Patent Document 3: Japanese Patent No. 5147091.
The present invention has an object to provide a stirrer with which the shear force can be applied to the fluid to be processed more efficiently by the action of the intermittent jet flow. Also, the present invention has an object to provide a stirrer with which as a result of this efficient shearing, very fine dispersion and emulsification such as nano-level dispersion and emulsification can be realized.
The present invention was achieved as a result of the efforts to improve the stirrer, wherein the said efforts are made on the basis of a new idea to increase the relative difference in the velocities in the interface of a forward flow and a backward flow (ejection flow and suction flow from the slits) of the fluid to be processed, the said relative difference being generated by the intermittent jet flow. Specifically, the present invention could be completed by finding the relationship among the screen, the slit formed in the screen, the rotor's blade, and the blade's edge; with this relationship, the relative difference in the velocities of the forward and backward flows of the fluid to be processed can be increased.
Thus, the present invention is modifying a stirrer, comprising:
a rotor which is equipped with plural blades and a screen having plural slits which is arranged around the rotor, in which
the blades and the slits have at least a matching region between them in the same position in the lengthwise direction of the rotation axis of the rotor, and
a fluid to be processed is ejected as an intermittent jet flow through the slits from inside the screen to outside the screen by rotating at least the rotor of the rotor and the screen thereby the rotor and the screen rotating relatively each other.
The present invention provides the stirrer which can satisfy the condition 1 and the condition 2 shown below at the same time.
(Condition 1)
A relationship among a width (b) of the edge portion of the blade in a rotational direction, a width (s) of the slit in a circumferential direction, and a width (t) of the screen member in a circumferential direction in the matching region is shown by b≥2s+t.
(Condition 2)
A relationship between the width (b) of the edge portion of the blade in a rotational direction and a maximum inner diameter (c) of the screen in the matching region is shown by b≥0.1c.
As described above, in the conventional example shown in
The action of the present invention is not necessarily elucidated completely; however, with referring to
It is difficult to directly measure the velocities of the forward flow and the backward flow (ejection flow and suction flow) of the fluid to be processed; however, as shown in Examples described later, it was confirmed that in the stirrer of Examples of the present invention, refinement of the microparticles of the fluid to be processed could be clearly facilitated as compared with conventional stirrers.
In the present invention, the width of the slit in a circumferential direction can be changed so far as the intermittent jet flow can be generated; and thus, the width (s) of the slit in a circumferential direction is preferably in the range of 0.2 to 4.0 mm, while more preferably in the range of 0.5 to 2.0 mm.
Desirably the present invention is executed such that diameters of the blades and of the screen become smaller as departing from an introduction part through which the fluid to be processed is introduced into the screen toward outside in the axial direction.
Considering the relationship between the slit and the introduction port in the axial direction, the amount of the ejection from the slit near to the introduction part tends to increase, and on the contrary, the amount of the ejection from the slit far from the introduction part tends to decrease. Therefore, by configuring the diameters of the blade and screen so as to be shorter as moving more apart from the introduction part in the axial direction, the amount of ejection in the axial direction can be made even. By so doing, generation of cavitation can be suppressed so that mechanical troubles can be reduced.
When the plural slits are made to have the same width in the circumferential direction and be disposed with the same interval in the circumferential direction, the fluid to be processed can be processed under a more even condition in the circumferential direction. However, this does not preclude the use of plural slits having different widths, nor does preclude the embodiment of uneven intervals among the plural slits.
When the screen is made not to rotate, only the rotor's rotation number needs to be considered in individual controls. On the contrary, when the screen is made to rotate in the opposite direction to the rotor, this can make the stirrer suitable for very fine dispersion and emulsification such as nano-level dispersion and emulsification.
Meanwhile, the size of the blade may be changed variously so far as the condition 1 and the condition 2 are satisfied; however, if the space volume among the blades becomes too small, the throughput may decrease, so that it is preferable that total sum of the cross section area of the blades in the plane perpendicular to the rotor's rotation axis be smaller than the cross section area of the space inside the screen. Here, when the total sum of the cross section area of the blades in the plane perpendicular to the rotor's rotation axis is represented by Y in the following specific formulas 1 and 2, and the cross section area of the space inside the screen in the plane perpendicular to the rotor's rotation axis is represented by Z in the following specific formulas 1 and 2, it is preferable that Y and Z satisfy the specific formula 2. X in the specific formula 1 represents the cross section area perpendicular to the rotation axis in the region defined by the outer circumferential surface of the rotation axis and the inner circumferential surface of the screen. Also, X, Y, and Z are all in the matching region.
X−Y=Z (Specific Formula 1)
Y<Z (Specific Formula 2)
It is preferable that, of plural cross sections in the matching region, at least one cross section satisfy the specific formula 2, while more preferably all the cross sections satisfy the specific formula 2.
In addition, the present application may be regarded as follows. The present invention provides a stirrer comprising a rotating rotor provided with a plurality of blades and a screen arranged around the rotor, wherein the screen comprises a plurality of slits in a circumferential direction thereof as well as a screen member located between the slits that are located in a neighborhood to each other; an edge portion of the blade and the slit have a matching region where they are in the same position with each other in an axial direction of a rotation axis of the rotor; of the rotor and the screen, at least the rotor is rotated so as to relatively rotate the rotor and the screen thereby ejecting a fluid to be processed from inside the screen to outside thereof through the slit as an intermittent jet flow; and the stirrer satisfies following condition 1 and condition 2:
(Condition 1)
in the matching region, a relationship among a width (b) of the edge portion of the blade in a rotational direction, a width (s) of the slit in a circumferential direction, and a width (t) of the screen member in a circumferential direction is shown by b≥2s+t, and
(Condition 2)
a relationship between the width (b) of the edge portion of the blade in a rotational direction and a maximum inner diameter (c) of the screen in the matching region is shown by b≥0.1c.
In the present invention, as a result of further study on the intermittent jet flow, the stirrer which can apply the shear force to the fluid to be processed more efficiently by the action of the intermittent jet flow could be provided.
Further, the present invention has achieved to provide a stirrer with which extremely fine dispersion and emulsification such as nano-dispersion and nano-emulsification can be realized successfully, as a result of the efficient shearing.
Furthermore, the stirrer which can produce particles having a narrow particle size distribution with uniform particle diameter could be provided.
Hereunder, the first embodiment of the present invention will be explained based on the drawings.
Firstly, with referring to
The stirrer according to this embodiment comprises the processing member 1 disposed in the fluid that will be subjected to the processing treatment such as emulsification, dispersion, and mixing and the rotor 2 disposed in the processing member 1.
The processing member 1 is a hollow housing, which is supported by the supporting tube 3 and is arranged either in the accommodating vessel 4 in which the fluid to be processed is accommodated or in the flow path of the fluid to be processed. In this embodiment, it is shown that the processing member 1 is arranged in the front end of the supporting tube 3 and is inserted from the upper side of the accommodating vessel 4 into the lower side therein; however this is not always the case, so that execution of the embodiment may also be possible in such away that the processing member 1 may be supported by the supporting tube 3 so as to be projected from the bottom of the accommodating vessel 4 toward the upper direction thereof, as shown in
The processing member 1 comprises the sucking chamber 6 having the sucking port 5 through which the fluid to be processed is sucked into inside the chamber from the outside thereof, and the stirring chamber 7 that is connected through to the sucking chamber 6. The circumference of the stirring chamber 7 is stipulated by the screen 9 that has plural slits 8.
Meanwhile, in this specification, explanation will be made as to the screen 9 which is constituted by the slit 18, i.e., a space portion, and the screen member 19, i.e., an actual member located between the slits 18. Therefore, the screen 9 means the entirety including the slit 18 formed in plural screen members 19; and thus, the screen member 19 means each of actually existing members between the neighboring slits 18.
Between the sucking chamber 6 and the stirring chamber 7 is comparted by the comparting wall 10, and these compartments are connected through via the introduction opening 11 that is arranged in the comparting wall 10. However, the sucking chamber 6 and the comparting wall 10 are not essential; and thus, for example, the entirety of the upper part of the stirring chamber 7 may be the introduction opening without arranging the sucking chamber 6 whereby introducing the fluid to be processed in the accommodating vessel 4 directly into the stirring chamber 7, or alternatively the sucking chamber 6 and the stirring chamber 7 may form a configuration of one space in which these chambers are not comparted by the comparting wall 10.
The rotor 2 is a rotating body having plural blades 12 in the circumferential direction; and this rotates with keeping a very narrow clearance between the blades 12 and the screen 9. As to the mechanism to rotate the rotor 2, various rotation drive mechanisms may be used; and in this embodiment, the rotor 2 is arranged in the front end of the rotation axis 13, and this is accommodated in the stirring chamber 7 so as to be able to rotate. In more detail, the rotation axis 13 is inserted through the supporting tube 3 so as to go through the sucking chamber 6 and the opening 11 of the comparting wall 10 until the stirring chamber 7, and is provided with the rotor 2 in its front end (in the drawing, the lower end). The rear end of the rotation axis 13 is connected to the rotation drive mechanism such as the motor 14. The motor 14 is preferably subjected to the control of the control system such as the numerical control or a computer.
In this stirrer, during the time when the rotating blades 12 are passing the inner wall of the screen member 19 by rotation of the rotor 2, a shear force is applied to the fluid to be processed that is present between the blades and the wall whereby executing emulsification, dispersion, or mixing. At the same time with this, by rotation of the rotor 2, the kinetic energy is given to the fluid to be processed thereby accelerating the fluid to be processed while it is passing through the slits 18; and as a result, the fluid to be processed is discharged to outside the stirring chamber 7 while forming the intermittent jet flow. By this intermittent jet flow, the liquid-liquid shear force is also generated in the velocity interface whereby executing emulsification, dispersion, or mixing.
The screen 9 has a form of cylinder having a circular cross section. It is preferable that the screen 9 is made such that the diameter thereof becomes shorter as moving more apart from the introduction port 11 (in example of
If the diameter is made constant in the axial direction, the discharged amount from the slits 18 is larger in the part near to the introduction opening 11 (in
The slits 18 that are extended linearly to the direction of the rotation axis 13 (vertical direction in the example of the drawing) are shown; however, they may be extended spirally or with a curve. The shape of the slits 18 is not necessarily a narrow and long space; they may be in the shape of polygonal, circular, ellipse, or the like. In addition, although the slits 18 are formed in plural with the same intervals in the circumferential direction; however, they may be formed with putting off in the intervals, and besides, the slits 18 having plural shapes and sizes may not be excluded.
The slit 18 may be configured so as to have the lead angle variously changed. As illustrated in the drawing, the slit 18 may be configured so as to be linearly extended upward and downward with the lead angle of 90° between the plane perpendicular to the rotation axis 13 and the extending direction of the slit 18; or alternatively, the slit may be configured so as to be a spiral form having a prescribed lead angle, or so as to be extended upward and downward with a curve.
The blades 12 of the rotor 2 may be extended radially and linearly from the center of the rotor 2 with a constant width in the traverse sectional view (the cross section perpendicular to the axial direction of the rotation axis 13); or alternatively, they may become gradually wider in their sizes or may be warped as they are extending toward the outside.
Also, these blades 12 may have the lead angle of the edge portion 21 thereof arbitrarily changed. For example, the blade may be configured so as to be linearly extended upward and downward with the lead angle of 90° between the plane perpendicular to the rotation axis 13 and the extending direction of the edge portion 21; or alternatively, the blade may be configured so as to be a spiral form having a prescribed lead angle, or so as to be extended upward and downward with a curve.
The shape of these individual constituent members have a matching region where the edge portion of the blade 12 and the slit 18 are in the same position and overlapped with each other in the longitudinal direction of the slit 18. By rotation of the rotor 2, shearing of the fluid to be processed can be generated between the blade 12 and the screen member 19 in this matching region, and also, with rotation of the blade 12, a kinetic energy can be given to the fluid to be processed that goes through the slit 18 so as to generate the intermittent jet flow.
The clearance between the screen 9 and the blades 12 may be arbitrarily changed so far as the shear force and the jet flow as mentioned above can be generated; however, usually the clearance is preferably in the range of about 0.2 to 4.0 mm.
Also, in the case that, as shown in
With regard to other structure of the stirrer, the stirrers shown in
In the example of
In the example shown in
In the stirrer described above, the present invention is applied as follows. In the stirrer according to the present invention, the liquid-liquid shear force is generated in the velocity interface by the intermittent jet flow, and with this, processing of emulsification, dispersion, or mixing is conducted. At this time, in the stirrer according to the embodiment of the present invention, the rotor 2 and the screen 9, for example, as shown in
(Condition 1)
The relationship among the width (b) of the edge portion 21 of the blade 12 in a rotational direction, the width (s) of the slit 18 in a circumferential direction, and the width (t) of the screen member 19 in a circumferential direction satisfies the condition b≥2s+t. In other words, the width of the edge portion 21 of the blade 12 in the rotor 2 in the rotational direction is set larger than the distance between both edges of the neighboring two slits 18.
(Condition 2)
The relationship between the width (b) of the edge portion 21 of the blade 12 in a rotational direction and the maximum inner diameter (c) of the screen 9 satisfies the condition b≥0.1c. In other words, the ratio of the edge portion 21 of the blade 12 to the maximum inner diameter of the screen 9 is set so as to be larger than a prescribed value.
As mentioned above, the stirrer according to the presently applied invention satisfies both the condition 1 and the condition 2 in the matching region. With regard to the position of the rotation axis of the rotor 2 in the axial direction, any position may be allowed so far as it is in the matching region; however, it is preferable that both the condition 1 and the condition 2 are satisfied at least in the position where the position of the rotation axis 13 in the axial direction is the maximum inner diameter of the screen 9.
It was found that when the rotor 2 and the screen 9 satisfy these two conditions, this stirrer can increase the liquid-liquid shear force in the velocity interface, so that the stirrer is very effective in realization of very fine dispersion and emulsification such as nano-level dispersion and emulsification. On the basis of this finding, the present invention could be completed.
Explanation with regard to the action of the intermittent jet flow will be made with comparing to the conventional example shown in
In the conventional example shown in
On the other hand, in the embodiment of the present invention shown in
(With Regard to the Matching Region)
The edge portion 21 of the blade 12 and the slit 18 have at least the matching region in which they are in the same position and overlapped with each other in the longitudinal direction of the slit 18. Usually, the length of the blade 12 is set longer than the length of the slit 18, and thus, the entire length of the slit 18 is in the same position, where the blade 12 overlaps with the slit 18 with each other; however, the embodiment that the length of the blade 12 is shorter than the length of the slit 18 may also be allowed. In the present invention, when the relationship between the blade 12 and the slit 18 is stipulated, this refers to the relationship in the matching region unless explained otherwise.
(With Regard to the Screen)
As mentioned before, the embodiment wherein the screen 9 has the diameter thereof changed, like a tapered shape, etc., may also be allowed. In the present invention, in the case that the inner diameter is changed, the maximum inner diameter refers to the maximum diameter of the screen 9 in the matching region unless explained otherwise.
(With Regard to the Slit and the Screen Member)
The slit 18 may be extended parallel in the axial direction of the rotation axis of the rotor 2, or may be those having an angle to the axial direction, such as the one extended spirally. In any cases, in the present invention, the width (s) of the slit 18 in the circumferential direction refers to the length in the circumferential direction of the screen 9 (in other words, the direction perpendicular to the axial direction of the rotation axis of the rotor 2) in the matching region unless explained otherwise. In the axial direction of the rotation axis of the rotor 2, any position may be allowed so far as it is in the matching region; however, it is preferable that at least the position of the rotation axis 13 in the axial direction is the position of the maximum inner diameter of the screen 9. The width (s) of the slit 18 in the circumferential direction is preferably in the range of 0.2 to 4.0 mm, while more preferably in the range of 0.5 to 2.0 mm; however, this may be changed arbitrarily so far as the intermittent jet flow is generated.
The width (t) of the screen member 19 in the circumferential direction (in other words, the distance between the slits 18 that are located in a neighborhood to each other in the circumferential direction) may be arbitrarily changed; however, the width thereof is preferably 0.1 to 10 times, while more preferably about 0.5 to 2 times, as much as the width (s) of the slit 18 in the circumferential direction. If the width (t) of the screen member 19 in the circumferential direction is too wide, the number of the shearing decreases thereby leading to decrease in the throughput, while if the said width is too narrow, it may lead to substantially the same situation as the situation that the slits 18 are continuous, or it can cause significant decrease in a mechanical strength thereof.
(With Regard to the Rotor)
As mentioned before, the rotor 2 is a rotating body having plural blades 12. By making the edge portion 21 of the blade 12 satisfy the condition 1 and the condition 2 in the matching region, the action effect of the present invention can be expressed. Meanwhile, if the width of the edge portion 21 of the blade 12 is made too wide, the space volume between the blade 12 and the blade 12 becomes too small, so that it can cause a problem such as a unnecessarily decrease in the throughput. Considering this aspect, though different depending on the inner diameter of the screen 9, in rotor 2, in the region defined by the outer circumferential surface of the rotation axis 13 and the inner circumferential surface of the screen 9, it is preferable to set the total sum of the cross section area of the blades 12 in the plane perpendicular to the rotation axis 13 be smaller than the cross section area of the space inside the screen 9. As described before, in the matching region, when the total sum of the cross section area of the blades 12 in the plane perpendicular to the rotation axis 13 is represented by Y in the following specific formulas 1 and 2, and similarly, when in the matching region, the cross section area of the space inside the screen 9 in the plane perpendicular to the rotation axis 13 is represented by Z in the following specific formulas 1 and 2, it is preferable that Y and Z satisfy the specific formula 2. X in the specific formula 1 represents, in the matching region, the cross section area perpendicular to the rotation axis in the region defined by the outer circumferential surface of the rotation axis 13 and the inner circumferential surface of the screen 9.
X−Y=Z (Specific Formula 1)
Y<Z (Specific Formula 2)
It is preferable that, of plural cross sections in the matching region, at least one cross section satisfy the specific formula 2, while more preferably all the cross sections satisfy the specific formula 2. And, as shown in
(Preferable Use Conditions)
The numerical conditions of the screen 9, the slit 18, and the rotor 2, which can apply the condition 1 and the condition 2 of the present invention and are considered to be suitable for mass production by the today's technology, are as follows.
Maximum inner diameter of the screen 9: 30 to 500 mm (however, maximum diameter in the matching region)
Rotation number of the screen 9: 15 to 390 rotations/second
Number of the slit 18: 20 to 500
Maximum outer diameter of the rotor 2: 30 to 500 mm
Rotation number of the rotor 2: 15 to 390 rotations/second
As a matter of course, these numerical conditions show one example; and as the technologies such as rotation control, etc., advances in future, the present invention does not preclude to employ the conditions other than the above conditions.
Hereunder, the present invention will be explained further specifically by showing Examples. However, the present invention is not limited to the following Examples.
As Example 1 (namely, Example 1A and Example 1B) and Comparative Example 1 (namely, Comparative Example 1A and Comparative Example 1B), two kinds of the fluid to be processed were processed for testing (Example 1A/Comparative Example 1A, and Example 1B/Comparative Example 1B) by using the stirrer according to the first embodiment of the present invention (
In Example 1A/Comparative Example 1A in which pigment was subjected to the dispersion processing, copper phthalocyanine/sodium dodecylsulfate/pure water=2/0.2/97.8 (weight ratio) was used as the fluid to be processed.
In Example 1B/Comparative Example 1B in which resins were subjected to the emulsification processing, methyl methacrylate monomer/Aqualon KH-10/pure water=10/1/89 (weight ratio) was used as the fluid to be processed. However, Aqualon KH-10 is a surfactant manufactured by DKS Co., Ltd.
By using a pump in the test equipment shown in
The width of the slit and the width of the screen member shown in Table 1 are the width of the slit and the width of the screen member at the position where the plane perpendicular to the rotation axis 13 in the axial direction is the maximum inner diameter of the screen 9 in the matching region.
In Example 1, both the condition 1 and the condition 2 were satisfied; on the contrary, in Comparative Example 1, neither the Condition 1 nor the Condition 2 was satisfied.
3.6>2×0.8+1.19=2.79 (Condition 1)
3.6>0.1×30.4=3.04 (Condition 2)
2.4<2×0.8+1.19=2.79 (Condition 1)
2.4<0.1×30.4=3.04 (Condition 2)
With regard to Example 1 and Comparative Example 1, particle diameters (D50 and D90) of the particle as well as coefficient of variation (C. V.) of the particle diameter measured at several time points till the maximum processing time of 45 minutes are shown in
From
Next, even when the rotor and the screen having larger diameter than those of Example 1 were used in Example 2, it was confirmed whether or not the particle diameter significantly decreases with elapse of the processing time. The processing conditions are shown in Table 1, and the test results are shown in
In Example 2, too, as can be clearly seen in Table 1, both the condition 1 and the condition 2 were satisfied.
11.3>2×1.1+1.90=4.10 (Condition 1)
11.3>0.1×95.4=9.54 (Condition 2)
From
1. Processing member
2. Rotor
3. Supporting tube
4. Accommodating vessel
5. Sucking port
6. Sucking chamber
7. Stirring chamber
9. Screen
10. Comparting wall
11. Opening
12. Blade
13. Rotation axis
14. Motor
15. Stirring blade
18. Slit
19. Screen member
20. Second motor
21. Edge portion
Number | Date | Country | Kind |
---|---|---|---|
2015-061360 | Mar 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/059122 | 3/23/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/152895 | 9/29/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2628081 | Laird | Feb 1953 | A |
3195867 | Mould, Jr. | Jul 1965 | A |
4347004 | Platts | Aug 1982 | A |
9925503 | Enomura | Mar 2018 | B2 |
9962666 | Enomura | May 2018 | B2 |
10137420 | Luharuka | Nov 2018 | B2 |
20130215711 | Kamiya | Aug 2013 | A1 |
20130218348 | Kamiya | Aug 2013 | A1 |
20130226521 | Kamiya | Aug 2013 | A1 |
20140001663 | Kuraki | Jan 2014 | A1 |
20140192614 | Kamiya | Jul 2014 | A1 |
20150321154 | Enomura | Nov 2015 | A1 |
20150328602 | Enomura | Nov 2015 | A1 |
20170130358 | Enomura | May 2017 | A1 |
20180056255 | Enomura | Mar 2018 | A1 |
20180186722 | Enomura | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
1048465 | Jan 1959 | DE |
1140440 | Nov 1962 | DE |
2 679 789 | Feb 1993 | FR |
2679789 | Feb 1993 | FR |
755913 | Aug 1956 | GB |
60-61028 | Apr 1985 | JP |
7-96167 | Apr 1995 | JP |
2813673 | Oct 1998 | JP |
3123556 | Jan 2001 | JP |
5147091 | Feb 2013 | JP |
Entry |
---|
Machine Translation of FR 2679789 A1 Feb. 1993. |
Machine Translation of DE 1140440 B Nov. 1962. |
International Search Report, issued in PCT/JP2016/059122, dated Jun. 21, 2016. |
Extended European Search Report, dated Oct. 16, 2018, for European Application No. 16768798.7. |
Number | Date | Country | |
---|---|---|---|
20180056255 A1 | Mar 2018 | US |