The present invention relates generally to stirrer tools, and more particularly to stirrer tools for mixing a variety of products having various viscosities, sedimentation, and/or levels of separation of different constituent parts of the product.
In the course of using paints, putties, co-mixed liquids, and other products that tend to separate into different layers of their constituent materials (for example, paint, wall-board mud, and the like) it is often necessary to remix the products. To do this completely it is necessary to physically reach the bottom of the container in which the product is stored to ensure any sediment that may have settled there is mixed back into the product as well as combine new materials together in the course of preparing for their application. To make sure the remixing is as complete as possible, it is necessary to be able to reach the corners of the container defined by the junction of a bottom and sides of the container. To do this without the use of large, heavy and expensive equipment has resulted in the development of alternative and portable devices for mixing these products. Unfortunately, currently available devices work in only one or two specific ways. For example, some are specifically designed to reach the bottom and/or corner of a container to stir up and then mix in sediment deposited there, some have multiple and multi-level projections, some are collapsible, some rely on a creating a vortex in the product, some are flexible enough to be inserted into and removed from a container through a small opening, a small few may be temporarily and/or permanently varied in their size and/or shape, and many are made of hard materials that frequently damage the container in which they are being used. In addition, the use of hard materials, for example, inflexible metal wire, restricts the size or length of the mixing head and, as a result, the action does not provide sufficient static to create a vortex or velocity to stir products and/or paints completely. However, none provide the functionality from all of the above features and characteristics.
As a result, what is needed is a stirrer tool that can reach the bottom and/or corner of any container, has multiple and multi-level projections that are collapsible to be able to be inserted into a container through an opening smaller than the circumference of the stirrer tool, uses a vortex mixing action in conjunction with a dispersion ability, and that can be temporarily and/or permanently varied in its configuration, size and/or shape, and be made of materials of sufficient strength to dislodge and disrupt materials or sediment and that will not damage the container in which it is being used.
The present invention is described in relation to exemplary embodiments shown in the figures. It should be appreciated, however, that the embodiments shown are exemplary and other configurations and arrangements of the present invention may be apparent to those of ordinary skill in the applicable arts.
In accordance with an embodiment of the present invention, a stirrer tool may include (e.g., comprise) a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion. The projections may be made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products. Each of the first and second projections may be shortened by cutting-off a selected length of the projection, and the first plurality of projections may be configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers. The stirrer tool may further include an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft may be configured to be removably held in a device to rotate the elongate shaft, for example, but not limited to, a drill.
In accordance with one or more embodiments of the present invention, by constructing a head unit with a substantially rigid, cylindrical body, for example, a hard plastic, composite or metal, and a relatively thick yet flexible material, for example, but not limited to, a monofilament from a grass whip or an injection molded plastic and/or plastic compound, a large head unit may be obtained that can achieve the velocity to produce a stirring action sufficient to mix heavy and or thick liquids and/or products. In addition, the head is flexible enough to be inserted into and removed from a container through an opening in the top of the container that is smaller than the diameter of the head unit. To do this, “fingers” of the flexible material, for example, but not limited to, a monofilament and/or injection molded finger having a diameter ranging from about 1/16th of an inch to about 3/16th of an inch or more depending on the material to be mixed, are attached to and extend away from the substantially cylindrical body in a configuration that enables the head unit to be used to dig out tough sediment that had settled in the bottom of the container. In some embodiments, each of the fingers may be ½ inch in diameter, but as the diameter of the fingers increases, so does the size of the head unit, which generally means that a more powerful device will likely be required to rotate the head unit and the elongate shaft at speeds sufficient to adequately mix the desired liquid, product, and/or material. Numerous arrangements and/or configurations of the monofilament fingers are possible and, in general, the fingers extend outwardly from and into the x, y and z planes around the substantially cylindrical body. In some embodiments each finger has a substantially identical and opposite finger located substantially 180° away on the other side of the body of the head unit. In other embodiments, one or more sets of three or more fingers may be arranged substantially evenly spaced around the body of the head unit such that each set is in a single plane and at different levels and heights along the body and substantially perpendicular to the body of the head unit. In some embodiments, each finger may have a substantially rounded, oval, and/or oblong shape. In still other embodiments, each finger may have a substantially triangular, square, and/or other polygonal shape with sharp edges, which may result in improved stirring and mixing performance.
The head unit may be adapted to receive and/or be attached to one end of a rod that is adapted, at its other end, to be inserted into and held in a device for rotating the rod, for example, but not limited to, a drill chuck. For example, in one embodiment, the rod may be a ¼″ rod that has male threads at one end and fits into and may removably engage a female threaded portion in the head that was tapped with a corresponding thread to engage and receive the male threads of the rod.
Because of the flexible nature of the monofilament fingers, in accordance with one or more embodiments of the present invention, the head unit may be inserted into and retrieved from various sizes and shapes of containers, essentially, regardless of the sized and/or configuration of their openings. In general, the head unit may be used with openings that have internal diameters less than the outer diameter of the head unit, as defined by the length of the longest finger(s), and slightly larger than the diameter of the body of the head unit. In general, if the container has an opening made from an inflexible and/or non-expandable material, e.g., metal, the smallest opening that the head unit can fit through is the diameter of the body of the head unit plus two times the cross-sectional diameter of the fingers on the body. If the opening in the container is made of an expandable material, the opening can be smaller than the non-expandable opening, and will be limited by the maximum size to which the opening can expand.
In accordance with one or more embodiments of the present invention, the body portion of the head unit may be mass-produced using a plastic and/or composite injection molding process to produce the body portion of the head unit. In some embodiments, the body portion and finger assembly may be made as a one-piece plastic injection molded part with a threaded female opening at the base to accept a threaded male rod or shaft. In still other embodiments, the body portion may be made with a plurality of openings to receive the monofilament, a rod channel defined by an opening at an end of the body portion, and, optionally, a channel running from and defined by an opening in an exterior surface of the body and to an opening on a wall of the rod channel to receive a set screw that can be screwed in toward the rod channel to engage and hold the head unit in place on the rod. In general, the head units are designed to be used multiple times and finally disposed of at the end of their useful life. However, in some instances it may be necessary to discard the head unit after a single use, for example, but not limited to, when mixing toxic and/or hazardous/biohazardous materials. The strength and potential useful life of the stirrer tool may be extended by making the body out of a sturdier material, for example, a metal such as steel, cast iron, etc., and that, while it would likely be heavier, it would function exactly the same as the lighter-duty materials. While the metal body portion may be formed from casting, shaping and cutting rod stock, and/or by cutting pre-shaped rod stock, it may or may not be possible or economically reasonable to have preformed openings in the body portion for the fingers. Instead, as is also possible with plastic and/or composite body portions, the openings may be drilled and/or threaded after the body portion is made. In this way the fingers may be affixed to the body portion by, for example, gluing monofilament fingers into the openings, placing the body portion into a mold and injection molding the fingers into the openings, threading an end of the monofilament fingers and then screwing the threaded end into cooperatively threaded openings. Regardless of which material is used to make the body portion of the head unit (for example, plastic, composite, metal or other material), it will generally be impervious to paint thinners, solvents and/or to any of the other materials to be mixed.
In accordance with one or more embodiments of the present invention, in general, the body portion of the head unit may include (e.g., comprise) a longer length than diameter to allow for a number of co-planar arrangements of projections, that is, the fingers, which may be spaced in different positions around the body portion of the head unit. The body portion may have a longitudinal axis. Examples of possible arrangements include, for example, two fingers in balanced opposing positions on a plane perpendicular to the length of the body portion and/or at different levels along the body portion of the head unit. However, various offset and unbalanced configurations are contemplated as these configurations may provide benefits in mixing liquids with and/or without sedimentation.
In accordance with one or more embodiments of the present invention, at a finger end of the body portion opposite from the end with the rod channel, additional monofilament fingers may project at equal and/or varying angles from the end opposite the end with the rod channel. These fingers, in general, will be of equal length, but shorter than the fingers that project from the side of the body portion, and will be spaced around the finger end of the body portion at substantially equal distances apart from each other and at substantially the same angles from a longitudinal axis of the body portion.
In accordance with one or more embodiments of the present invention, a shaft made from a separate piece of a round or a multi sided rod with an end having a machined thread that is adapted to screw into the thread in the rod channel of the body portion of the head unit, may be used as the driver or connection mechanism to a device (for example, a battery operated cordless and/or electric drill, other powered device, or a hand-powered device) that can turn (i.e., rotate) the head unit at sufficient speed to mix liquids, fluids and/or viscous products (hereinafter referred to collectively and/or singularly as “liquids”). Alternatively, the rod and head unit may have other configurations to enable them to be removably attached to each other, but be of sufficient strength to withstand the forces experienced when mixing liquids as well as when being entered or withdrawn from a container. For example, a ball and socket connection similar to socket and ratchet handle, a tapped and threaded hole passing from the outside of the body of the head to the inside of the body in which a set screw may be placed. A shaped rod channel, for example, a semi-circular rod channel, to receive similarly shaped semi-circular end of the rod. In addition, this configuration may use either or both of the ball and socket and set screw fastening mechanisms described previously. In accordance with one or more embodiments of the present invention, the threaded rod may be of any diameter, including, for example, ¼″, ⅜″, ½″, etc., to allow a chuck from a drill, other powered device, or hand-powered device to be attached and drive the stirrer tool. The rod may also be of a variety of lengths that are sufficient to allow the head unit to reach the bottom of any container in which it will be used.
In accordance with one or more embodiments of the present invention, in addition to the fingers on the body of the head unit, one or more separate intermediate assemblies of the fingers may be slid on and be locked onto the rod by a variety of different methods and at adjustable levels. This may be necessitated by the material to be mixed and/or the size of the container to be mixed. In general, the intermediate assemblies may be used to provide additional stirring motion above the head unit and, as the head unit kicks up the sediment from the bottom of the container that has settled there, the intermediate assemblies add to the vortex action provided by the head unit.
In accordance with one or more embodiments of the present invention, and similar to the head unit, these intermediate assemblies may be made of plastic, composite and/or metal with springs or cable so that the flexibility of this part will still allow the assembly to pass through a smaller opening. Each intermediate assembly may have a coaxially aligned channel running through the body of the intermediate assembly and open through openings on opposite faces of the intermediate body portion that the rod may pass through and be fastened against. The coaxially aligned channel may be multi sided so as to match a multi-sided rod and provide the necessary fastening and/or locking component, for example, a set screw to keep the unit turning as the rest of the stirrer is turned in the liquid, or one or more circlips (i.e., circle clips)/“C”-clips and/or “E”-clips in one or more slots around the rod to lock the intermediate fingers at different heights along the rod.
In accordance with one or more embodiments of the present invention, an optional and separate retrieval cup may be made from plastic or another material may be provided as to aid in the removal of the stirrer from a container. The retrieval cup is adapted to minimize the spray and mess associated with removing the stirrer tool from the opening in the container after having mixed the product in the container. The retrieval cup may also aid in the easier handling of the stirrer, which may be covered in the stirred liquid. The cup may have a hole closely matching the diameter of the rod being used either with or without a grommet installed or molded into the cup to seal the rod to the cup and have sufficient size to accommodate the head unit to be drawn inside. In general, the cup may have a single opening in a bottom of the cup through which the rod may be passed prior to installation in a drill. Alternatively, the cup may be adapted to permit installation on the rod after the rod has been inserted and tightened into the drill by having a sealable slit through one side of the cup up to and into the opening in the bottom of the cup. In accordance with one or more embodiments of the present invention, the cup may be made from an inexpensive disposable material.
In accordance with one or more embodiments of the present invention, another type of enclosed mixing could be achieved by providing a cap that could fit over and seal a mixing cup or matched container. The cap would define a hole closely matching the diameter of the rod to allow the rod to pass through and seal the lid to the cup with the head unit inside. When the drill, other powered device, or hand-powered device, is turned on, the cap prevents the liquid inside the mixing cup or matched container from escaping the container. This permits mixing of the liquid in the mixing cup at high speeds because the cap prevents the liquid from splashing out of the container.
In accordance with one or more embodiments of the present invention, a kit may include, for example, stirrer head(s), rod(s), container(s) and matching container lid(s), intermediary element(s), etc.
In accordance with one or more embodiments of the present invention, the stirrer device is adapted to be able to enter a smaller diameter hole than its unfolded overall diameter (for example, the distance between the outer ends of opposing fingers that are perpendicular to the sides of the body portion) due to the natural capacity of each finger for flexible compression and fanning out again when it has cleared the container opening or spout. Once inside the container the stirrer may be activated in a direction that will keep the head screwed on in the same direction. This may be done using a drill or brace or any device that could be attached to the rod and driven in the proper direction.
In accordance with one or more embodiments of the present invention, the stirring action imparted to the material by the stirrer tool creates a vortex due to the friction of the fingers passing through the fluid and their alignment along the body of the head. This vortex causes the contents at the bottom of the container to be drawn to the top and back down again within the container in a continuous cycle. The fingers projecting from the top of the head unit can be pressed into the bottom and corners of the container to dig up any sediment or solids that are not picked up by the vortex action and then thrown into the fingers on the body portion and introduced into the mixing cycle as described above. The addition of intermediary fingers on the rod above the head unit further aids in the mixing cycle and assures a more homogenous mixture, especially in larger containers.
In accordance with one or more embodiments of the present invention, once adequate stirring of the product in the container is achieved the head unit of the stirrer tool may be removed by pulling it back through the opening of the container, if the head unit is to be retrieved. To retrieve the stirrer, the whole tool may be pulled back out through the opening or spout in the container by collapsing the fingers distally toward and almost parallel with the body portion inside the opening or spout as it exits the container. Any residual liquid that may splash out through the sudden flexing of the fingers back to their extended position after exiting the opening or spout may be arrested using a rag or an upside down splash cup that has a hole to allow the rod to pass through and catch the paint as it escapes the container. If the head unit is to be used only once, the drill or powered device may be reversed and, if the head and rod are threaded, the head will unscrew and remain in the container. If the head unit is left in the container, the fingers are configured so that the head unit will not hinder the flow of the mixed liquid as it exits the container.
In accordance with one or more embodiments of the present invention, if the head unit is retrieved, it may be cleaned up in a cup of an appropriate solvent and be reused or, if the head unit is not to be reused, it may simply be unscrewed from the rod and disposed of in accordance with the proper procedures for the liquid that was mixed. In general, the rod may be retained for future use with a new head unit. For a clean up of the head unit that reduces the splashing of cleanup, the head unit may be put in cup of thinner and sealed in the cup as described above for mixing other liquids.
In accordance with one or more embodiments of the present invention, the stirrer tool provides a variety of benefits. For example, the stirrer can provide an inexpensive way to mix viscous fluids within their container no matter what shape or unusual way the container is formed/configured. Also, the stirrer can replace expensive shaker paint mixers that can sell for thousands of dollars, as well as, being easily portable to job sites, something that cannot be said for shakers. In addition, most containers cannot be fitted into common paint shakers. A further benefit is the inventions ability to get into crevasses to assure that all sediment will be mixed in a uniform method, thus making true mixed colors or unmixed liquids uniform and consistent in texture. Likewise, the stirrer tool can make quicker work by homogeneous mixing of liquids to assure sprayed liquids and their thinners are uniform before application. Embodiments of the present invention may be made in specific sizes and lengths or oversized to allow for customizing by the consumer, i.e., by cutting the fingers to shorter lengths or using longer rods for larger containers, for example, 55 or larger gallon drums, containers, etc.
In accordance with one or more embodiments of the present invention, the stirrer tool may also be used in other industries, for example, the food industry, the medical field and the automotive field as well as the painting industry. Embodiments of the stirrer tool may be made inexpensively so that it may be cleaned up to be reused or just discarded. This may be particularly advantageous; if harmful or infectious materials are being mixed or stirred the head unit and rod may just be discarded. Similarly, if sterile materials are being mixed, the head unit and rod may be sterile and thrown away and/or re-sterilized for future use.
In accordance with one or more embodiments of the present invention, use of the stirrer tool can help provide longer shelf life for paint by not having to break the seal of a 5-Gallon paint can or other different sized and shaped containers, which tends to shorten the useful life of the material inside. Likewise, if the stirrer tool, and especially each finger, is made from plastic or a soft material, the stirrer tool may be used to stir liquids directly in the newer plastic containers on the market, since it is not as abrasive to the plastic shell of the container as other metal devices. In addition, the fingers may be easily clipped to shorter lengths to provide a stiffer stirrer for materials such as wood putty, plastic body filler (for example, Bondo® from the Bondo Corporation), resins such as fiberglass, wallboard compounds, and/or even cement and concrete. In general, the use of plastic in the construction of one of more embodiments of the present invention greatly reduces the risk of causing a spark with contact to metal containers thus making the mixing of flammable liquids a safer operation. The use of this invention dramatically increases the quality of sprayed paint mixtures, especially when reducing the paint with thinners, reducers and retarders and assures consistent paint coverage and atomization of paint at the sprayer tip and roller or brush tips.
In
In
In accordance with an embodiment of the present invention, a stirrer tool system may include a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion. The projections being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products. Each projection also being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers. The stirrer tool further includes an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft. The stirrer tool still further includes a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system.
In accordance with an embodiment of the present invention, a stirrer tool system may include a head means including a body means having a longitudinal axis, a first plurality of projection means extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projection means extending in a substantially distal direction away from a distal end of the body portion. The projection means may be made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products. Each of the first and second projection means may be shortened by cutting-off a selected length of the projection means, and the first plurality of projection means may be configured to provide a vortex mixing action and the second plurality of projection means configured to reach and stir up sediment on bottoms and in corners in containers. The stirring means may further include an elongate shaft means including a distal end and a proximal end, the elongate shaft means being coaxially aligned with and the distal end of the elongate shaft means being attached to the head means and the proximal end of the elongate shaft means may be configured to be removably held in a device to rotate the elongate shaft.
In accordance with an embodiment of the present invention, a method of stirring a liquid within a container may include using a stirrer tool having a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion. The projections may be made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products. The method may further include attaching the head component to an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component. The method may further include fastening the proximal end of the elongate shaft in a device to rotate the elongate shaft, inserting at least the head component into a liquid in a container, and rotating the stirrer tool using the device to rotate the elongate shaft to mix the liquid in the container.
The method may optionally include mixing the liquid with the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers. The method may optionally include selectively shortening one or more of the first and second projections by cutting-off a selected length of the projection, and the first plurality of projections may be configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers.
In accordance with an embodiment of the present invention, a stirrer tool system may include a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion. The projections being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products. Each of the projections being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers; an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft. The system further includes an intermediary finger component coaxially aligned with and affixed to the elongate shaft proximal to the head component. The system still further includes a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system.
In accordance with an embodiment of the present invention, a stirrer tool system may include a head means including a body means having a longitudinal axis, a first plurality of projection means extending substantially radially out from an outer surface of the body means and being substantially perpendicular to the longitudinal axis of the body means, and a second plurality of projection means extending in a substantially distal direction away from a distal end of the body means, the projection means being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head means defined by outer ends of the first plurality of projection means and stiff enough to mix viscous products, each projection means being capable of being shortened by cutting off a selected length of the projection means, the first plurality of projection means configured to provide a vortex mixing action and the second plurality of projection means configured to reach and stir up sediment on bottoms and in corners in containers. The stirring means may further include an elongate shaft means including a distal end and a proximal end, the elongate shaft means being coaxially aligned with and the distal end of the elongate shaft means being attached to the head means and the proximal end of the elongate shaft means being configured to be removably held in a device to rotate the elongate shaft means. The stirring means still further including a splash prevention means configured to be coaxially aligned with the elongate shaft means to permit movement of the splash prevention means longitudinally along the elongate shaft means and to completely cover, receive and hold the head means upon removal of the head means from a container to prevent splashing of any material from the head means onto a user of the system.
A method for stirring a liquid using a stirrer tool system including a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion, the projections being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products, each projection being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers; an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft; and a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system. The method may include fastening the head component to the distal end of the elongate shaft; fastening the proximal end of the elongate shaft to the device; inserting at least the head component into the material, for example, a liquid, in the container, using the device to rotate the elongate shaft and head component to mix the liquid, and removing the head component from the liquid. The method may optionally include removing the head component from the liquid and the container directly into the splash prevention component to prevent any of the liquid from splashing/flying off the head component and on to the user or area surrounding the container.
In accordance with an embodiment of the present invention, a stirrer tool system may include a head means including a body means having a longitudinal axis, a first plurality of projection means extending substantially radially out from an outer surface of the body means and being substantially perpendicular to the longitudinal axis of the body means, and a second plurality of projection means extending in a substantially distal direction away from a distal end of the body means, the projection means being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head means defined by outer ends of the first plurality of projection means and stiff enough to mix viscous products, each projection means being capable of being shortened by cutting off a selected length of the projection means, the first plurality of projection means configured to provide a vortex mixing action and the second plurality of projection means configured to reach and stir up sediment on bottoms and in corners in containers; an elongate shaft means including a distal end and a proximal end, the elongate shaft means being coaxially aligned with and the distal end of the elongate shaft means being attached to the head means and the proximal end of the elongate shaft means being configured to be removably held in a device means to rotate the elongate shaft means; an intermediary finger means coaxially aligned with and affixed to the elongate shaft means proximal to the head means; and a splash prevention means configured to be coaxially aligned with the elongate shaft means to permit movement of the splash prevention means longitudinally along the elongate shaft means and to completely cover, receive and hold the head means upon removal of the head means from a container to prevent splashing of any material from the head means onto a user of the system.
A method for stirring a liquid using a stirrer tool system including a head component including a body portion having a longitudinal axis, a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion, and a second plurality of projections extending in a substantially distal direction away from a distal end of the body portion, the projections being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products, each projection being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to reach and stir up sediment on bottoms and in corners in containers; an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft; an intermediary finger component coaxially aligned with and affixed to the elongate shaft proximal to the head component; and a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system. The method may include fastening the head component to the distal end of the elongate shaft; fastening the proximal end of the elongate shaft to the device; fastening at least one intermediary finger component to the elongate shaft; inserting at least the head component into the material, for example, a liquid, in the container, using the device to rotate the elongate shaft and head component to mix the liquid, and removing the head component from the liquid. The method may optionally include removing the head component from the liquid and the container directly into the splash prevention component to prevent any of the liquid from splashing/flying off the head component and on to the user or area surrounding the container.
In accordance with an embodiment of the present invention, a stirrer tool including a head component including a first body portion having a proximal end, a distal end, a first diameter, a first length and a longitudinal axis, the head component further including a second body portion coaxially aligned with the first body portion along the longitudinal axis and the second body portion having a proximal end, a distal end, a second diameter smaller than the first diameter, a proximal end and a second length shorter than the first length of the first body portion, the proximal end of the second body portion being connected to the distal end of the first body portion. The stirrer tool may further include a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion. The stirrer tool may still further include a second plurality of projections being arranged substantially evenly on and extending in a substantially distal direction away from the distal end of the first body portion. In the stirrer tool each of the projections may be made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products, each projection being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to extend beyond reach and stir up sediment on bottoms and in corners in containers.
In accordance with yet another embodiment of the present invention, a stirrer tool system including a head component including a first body portion having a proximal end, a distal end, a first diameter, a first length and a longitudinal axis, the head component further including a second body portion coaxially aligned with the first body portion along the longitudinal axis and the second body portion having a proximal end, a distal end, a second diameter smaller than the first diameter, a proximal end and a second length shorter than the first length of the first body portion, the proximal end of the second body portion being connected to the distal end of the first body portion. The stirrer tool system may further include a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion. The stirrer tool system may still further include a second plurality of projections being arranged substantially evenly on and extending in a substantially distal direction away from the distal end of the first body portion. In the stirrer tool system each of the projections may be made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products, each projection being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to extend beyond reach and stir up sediment on bottoms and in corners in containers. The stirrer tool system may still further include an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft. The stirrer tool system may still further include a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system.
In accordance with yet another embodiment of the present invention, a stirrer tool system including a head component including a first body portion having a proximal end, a distal end, a first diameter, a first length and a longitudinal axis, the head component further including a second body portion coaxially aligned with the first body portion along the longitudinal axis and the second body portion having a proximal end, a distal end, a second diameter smaller than the first diameter, a proximal end and a second length shorter than the first length of the first body portion, the proximal end of the second body portion being connected to the distal end of the first body portion. The stirrer tool system may further include a first plurality of projections extending substantially radially out from an outer surface of the body portion and being substantially perpendicular to the longitudinal axis of the body portion. The stirrer tool system may still further include a second plurality of projections being arranged substantially evenly on and extending in a substantially distal direction away from the distal end of the first body portion. In the stirrer tool system each of the first and second pluralities of projections being made of a substantially stiff material that is flexible enough to be bent to fit through an opening in a container that is smaller in diameter than a diameter of the head component defined by outer ends of the first plurality of projections and stiff enough to mix viscous products, each projection being capable of being shortened by cutting off a selected length of the projection, the first plurality of projections configured to provide a vortex mixing action and the second plurality of projections configured to extend beyond reach and stir up sediment on bottoms and in corners in containers. The stirrer tool system may still further include an elongate shaft including a distal end and a proximal end, the elongate shaft being coaxially aligned with and the distal end of the elongate shaft being attached to the head component and the proximal end of the elongate shaft being configured to be removably held in a device to rotate the elongate shaft. The stirrer tool system may still further include an intermediary finger component coaxially aligned with and affixed to the elongate shaft proximal to the head component. The stirrer tool system may still further include a splash prevention component configured to be coaxially aligned with the elongate shaft to permit movement of the splash prevention component longitudinally along the elongate shaft and to completely cover, receive and hold the head component upon removal of the head component from a container to prevent splashing of any material from the head component onto a user of the system.
One or more embodiments of the present invention include the apparatus, tool, and system substantially as shown and described. Additionally, in other embodiments of the present invention, every element can be separately and individually claimed.
As is apparent from the above description and the figures referenced therein, there is provided a variety of embodiments of a stirrer tool, intermediary finger assembly and stirrer tool system, in accordance with the present invention. While this invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, applicant intends to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this invention.
This application is a Continuation-in-Part of U.S. Pat. No. 7,484,879, dated Feb. 3, 2009, which claims the benefit of and priority to U.S. Provisional Patent Application No. 60/726,171, filed on Oct. 14, 2005, both of which are hereby incorporated herein in their entireties.
Number | Date | Country | |
---|---|---|---|
60726171 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11520770 | Sep 2006 | US |
Child | 12364159 | US |