The invention relates to a stirring mill comprising a horizontally arranged milling vessel, which has a cylindrical inner wall,
comprising a stirring shaft, which is arranged in the milling vessel and which can be driven about a joint central longitudinal axis in a drive direction of rotation,
comprising a milling chamber, which is defined by the inner wall and the stirring shaft, wherein, at a first end of the milling chamber, an inlet for material to be ground discharges into said milling chamber,
wherein an outlet for material to be ground opens out from a second end of the milling vessel, which is opposite to the first end of the milling vessel,
wherein the stirring shaft has a first stirring shaft section of a smaller diameter D24, which is adjacent to the inlet for material to be ground and which defines a first milling chamber area, and a second stirring shaft section of a larger diameter D25, which is adjacent to the outlet for material to be ground and which defines a second milling chamber area, whereby the following applies: D25>D24,
wherein the second stirring shaft section has a hollow space, which is closed by a bottom with respect to the first stirring shaft section and in which a screen is arranged, which is connected to the outlet for material to be ground and which ends at a distance upstream of the bottom, and
wherein the second stirring shaft section has slits, which connect the hollow space to the second milling chamber area.
In the case of such stirring mills, which are known from DE 100 64 828 B4, the longitudinal slits, which form part of a separating device, extend in the second stirring shaft section slightly into the first stirring shaft section of a smaller diameter. They end approximately in a radial plane with the screen, which forms part of the separating device. The material to be ground flows through the milling vessel from the inlet for material to be ground to the opposite end of the milling chamber and then enters into the hollow space inside the second stirring shaft section, together with the auxiliary milling bodies taken along by the flow of material to be ground. Due to the fact that the hollow space is formed essentially cylindrically, the webs defined by the slits are larger in the end-side area of the stirring shaft than in the area of the cover of the screen. An intensified centrifuging of auxiliary milling bodies and coarse particles of material to be ground thus takes place in the entry region of the hollow space. The radial auxiliary milling body flow from the separating device back into the milling chamber is to thus be intensified thereby.
A stirring mill, which is similar to the above-described stirring mill, is known from DE 10 2013 111 762 A1, in the case of which the stirring shaft has a profile, which is constant across its full length. In the area between the inlet for material to be ground and the separating device, recesses are formed, which run in the longitudinal direction of the stirring shaft and which discharge into the slits, which surround the hollow space comprising the screen in the second stirring shaft section. The purpose of the recesses, which are formed symmetrically to a respective radius, is to convey the auxiliary milling bodies directly into the slits of the separating device, so that an intensified return into the milling chamber takes place. A sufficiently even and compression-free distribution of the auxiliary milling bodies in the milling chamber is not yet attained by means of these known measures.
The invention is thus based on the object of further developing a stirring mill in such a way that a largely even distribution of the auxiliary milling bodies in the milling chamber is attained by avoiding compressions.
This object is solved according to the invention in that the first stirring shaft section has at least one bypass channel, which penetrates the bottom of the hollow space and connects the first milling chamber area to the hollow space.
It is attained by means of the measures according to the invention that material to be ground, which is largely free from auxiliary milling bodies, is conveyed into the separating device directly in the bypass, thus directly upstream of the screen. There, the fine particles of material to be ground are discharged directly through the outlet for material to be ground. A portion of the material to be ground, which is already sufficiently fine, is thus subjected to a milling process only in the first milling chamber area.
If, according to an advantageous further development of the invention, the at least one bypass channel, which is formed in the first stirring shaft section, extends in the direction of the central longitudinal axis across 10 to 100% or at least 70%, respectively, or at least 80%, respectively, or at least 90%, respectively, of the length L24 of the first stirring shaft section, it can be attained thereby that the material to be ground, which is supplied to the separating device in the bypass, is already freed from auxiliary milling bodies and coarse particles of material to be ground to the desired extent. This effect is attained in particularly pronounced manner, when the at least one bypass channel has an inner diameter D39, which is smaller than the inner diameter D27 of the hollow space.
According to a further advantageous further development of the invention, this effect is improved when the at least one bypass channel is inclined radially to the outside opposite to the drive direction of rotation, because, by means of this formation of the bypass channels, the centrifugal effect, which has a correspondingly stronger effect on auxiliary milling bodies and coarse particles of material to be ground, is intensified.
Further features, details and advantages of the invention follow from the below description of exemplary embodiments of the invention on the basis of the drawings, in which
As can be gathered from
In the upper area of the machine frame 1, a horizontal milling vessel 6 is fastened to said machine frame. Said milling vessel has a first milling vessel lid 7, which is attached to the machine frame 1 and in which the drive shaft 5 is supported so as to be rotatable by means of ball bearings 8. The milling vessel 6 further has a cylindrical inner wall 9, which is surrounded by a temperature-control jacket 10, into which temperature-control means, usually coolant, is introduced through an intake 11 and is discharged through a drain 12. At the end opposite to the first milling vessel lid 7, thus at a distance to the upper area of the machine frame 1, the milling vessel 6 is closed by means of a second milling vessel lid 13. The connection between the inner wall 9 along with temperature-control jacket 10 to the first lid 7 and the second lid 13 takes place in each case by means of flanges 14, 15 and corresponding screw connections 16. A milling chamber 17, into which an inlet 18 for material to be ground formed in the first lid 7 discharges and from which an outlet 19 for material to be ground arranged in the second lid 13 opens out, is limited by the cylindrical inner wall 9 and the first lid 7 and the second lid 13. An auxiliary milling body filling nozzle 20 furthermore discharges into and an auxiliary milling body outlet nozzle 21 opens out from the milling chamber 17, both of which are also formed on the second lid 13.
A stirring shaft 22, which is connected to the drive shaft 5 in a rotationally filed manner and which can be driven by the latter about a joint horizontal central longitudinal axis 23 of drive shaft 5, milling chamber 17, and stirring shaft 22, is arranged in the stirring chamber 17. The stirring shaft 22 is not supported in the milling chamber 17; it is thus mounted to the drive shaft 5 in a cantilever fashion via its coupling. Adjacent to the inlet 18 for material to be ground, the stirring shaft 22 has two sections, namely a first stirring shaft section 24 comprising an outer diameter D24, and, adjacent thereto, a second stirring shaft section 25 comprising an outer diameter D25. The following applies: D25>D24. A transition section 26 between the first stirring shaft section 24 of a smaller diameter D24 and the second stirring shaft section 25 of a larger diameter D25 is assigned to the first stirring shaft section 24.
The first stirring shaft section 24 is essentially formed as full material section, while the second stirring shaft section 25 has a hollow space 27, which is open towards the second lid 13. The length L27 of the hollow space 27 in the direction towards the first stirring shaft section 24 is smaller than the length L25 of the second stirring shaft section 25. The following thus applies: L27<L25. The second stirring shaft section 25 has longitudinal slits 28, which are open to the outside and run parallel to the axis 23, and which—as can be gathered from
In the second stirring shaft section 25, a separating device 31 is formed concentrically to the axis 23 and which consists of the longitudinal slits 28 and of a cylindrical screen 32, which is frontally closed towards the first stirring shaft section 24 by means of a cover 33 and which, at its other end, is held in a base 34, which is fastened to the second lid 13 and has the outlet 19 for material to be ground. As can in particular be gathered from
The stirring shaft 22 is covered with stirring elements 35, 36 in the form of stirring pins, which are each mounted at a circumferential distance of 90 degrees to one another on the circumference of the stirring shaft 22 and radially to the axis 23. Four stirring elements 35, 36 are in each case arranged in a plane perpendicular to the axis 23. The stirring elements 35 in the first milling chamber area 37 surrounding the first stirring shaft section 24 are longer than the stirring elements 36 in the second milling chamber area 38 surrounding the second stirring shaft section 25. This follows from the fact that the inner diameter D24 of the first milling chamber 37 is smaller than the inner diameter D25 of the second milling chamber area 38 and that all stirring elements 35, 36 end at the same distance from the inner wall 9 of the milling vessel 6. In the second stirring shaft section 25, two longitudinal slits 28 are in each case formed between two stirring elements 35, which are offset from one another by 90 degrees. Depending on the size of the stirring mill, the circumferential distance of the stirring elements 35 can be smaller than 90°. As the case may be, there are no longer two, but only one longitudinal slit 28, which is then formed in such a case between two stirring elements 35, which are adjacent in a circumferential plane.
In the case of the exemplary embodiment illustrated in
As can be gathered from the embodiment according to
As follows from the drawing, the bypass channels 39, 39′ are inclined opposite to the direction of rotation 29 in the same way as the longitudinal slits 28—viewed from the central longitudinal axis 23 to the outside. They thus discharge axially into the longitudinal slits 28. The bypass channels 39, 39′ furthermore have at least in the transition area 26—an inner diameter D39, D39′, which is smaller than the inner diameter D27 of the hollow space 27, so that the bypass channels 39, 39′ discharge directly through the bottom 41 of the hollow space 27 into the latter. The inner diameter D39, D39′ is slightly larger than the outer diameter D33 of the cover 33 of the screen 32.
The exemplary embodiment according to
The mode of operation is as follows:
The milling chamber 17, thus the free space located between the inner wall 9 and the stirring shaft 22, is filled with only suggested auxiliary milling bodies 42 up to approximately 90%. The diameter D42 of the auxiliary milling bodies 42 lies in the range of between 0.03 mm and 0.8 mm and preferably in the range of between 0.03 mm and 0.4 mm. The material to be ground or to be dispersed, respectively, is pumped through the inlet 18 for material to be ground into the milling vessel 6 and flows through the milling chamber 17 in flow-through direction 40 under intensive stress caused by the stirring elements 35, 36 and the auxiliary milling bodies 42, whereby the average flow-through speed in the first milling chamber area 37 is lower than in the second milling chamber area 38, namely due to the free cross sections of different sizes of these milling chamber areas 37, 38.
As can be gathered from
Due to the relatively slower flow speed of the material to be ground in the first milling chamber area 37 as compared to the second milling chamber area 38, the risk of the compaction and compression of auxiliary milling bodies 42 in the first milling chamber area 37 is lower than in the second milling chamber area 38. Due to the fact that a portion of the material to be ground is already supplied directly from the first milling chamber area 37 of the separating device 31 through the bypass channels 39, the flow speed of material to be ground is also reduced in the second milling chamber area 38, so that the risk of compressions of the auxiliary milling bodies 42 is reduced there as well.
When the bypass channels 39′, 39″ extend across a longer length L39′, L39″ in the direction of the inlet 18 of material to be ground—as in the exemplary embodiments according to
The risk of compressions of auxiliary milling bodies 42 is greatly reduced by means of the described measures, so that a significant throughput increase is made possible. This provides significant advantages, in particular in the case of the so-called passage operation; material to be ground is thereby conveyed several times through the milling vessel 6 in circulation.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 201 418.0 | Jan 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2018/000015 | 1/30/2018 | WO | 00 |