STOICHIOMETRIC NUCLEIC ACID PURIFICATION USING RANDOMER CAPTURE PROBE LIBRARIES

Information

  • Patent Application
  • 20190284596
  • Publication Number
    20190284596
  • Date Filed
    May 05, 2017
    7 years ago
  • Date Published
    September 19, 2019
    5 years ago
Abstract
This disclosure describes a method of purifying several full-length oligonucleotide targets from corresponding synthesis truncation products, in a way that ensures roughly stoichiometric equality among the targets.
Description
BACKGROUND

Technologies for writing (Gene Synthesis), editing (CRISPR/CAS) and reading (Next generation Sequencing-NGS) large collections of nucleic acids requires an enormous (>1000) number of oligonucleotides to be used as building blocks (writing), guides (editing) or hybridization probes and primers for doing highly multiplexed enrichment and sequencing (reading). It is not economical to synthesize, purify, and quantitate each oligonucleotide individually. Companies such as Agilent, NimbleGen, and Twist Biosciences have developed array-based synthesis platforms to allow highly multiplex DNA oligonucleotide synthesis, but the oligonucleotides synthesized by these platforms include truncation products. Because modern oligonucleotide synthesis occurs from 3′ to 5′, most impurity species are truncation oligonucleotide products lacking a number of nucleotides at the 5′ end, followed by species with one or more internal deletions. In single-plex synthesis, these fraction of these impurity products can be reduced through post-synthesis high pressure liquid chromatography (HPLC) or polyacrylamide gel electrophoresis (PAGE) purification, but HPLC and PAGE cannot be used to purify a pool of many different oligonucleotides. Furthermore, HPLC and PAGE are time- and labor-intensive and cannot be easily automated to high throughput. Additionally, even single-plex HPLC and PAGE purification of oligonucleotides result only in below 90% purity of full-length oligonucleotide products.


The concentrations of different oligonucleotides in an array-synthesized pool will vary significantly based on oligonucleotide length, oligonucleotide sequence, and synthesis reagent age and purity. Consequently, oligonucleotides synthesis yields can vary by more than 16-fold from the same quantity of initial synthesis reagents. The variation in oligonucleotide concentrations can adversely affect downstream applications, e.g., in the production of long synthetic genes. In NGS, concentration variations in oligonucleotide pools used for hybrid-capture enrichment result in sequencing biases that cause significant wasted NGS reads.


SUMMARY

In accordance with the present disclosure, there is provided a method for generating a set of precursor nucleotide sequences comprising a target oligonucleotide molecule, wherein the precursor nucleotide sequence comprises a fifth region that comprises the nucleotide sequence of the target oligonucleotide molecule and a fourth region and a third region, wherein at least one of the fourth and third regions differs from any subsequence within the target oligonucleotide, the method comprising:

    • (i) calculating for the precursor nucleotide sequence the standard free energy of hybridization between the precursor nucleotide sequence and (a) a first oligonucleotide comprising a second region that is complementary to the third region of the precursor oligonucleotide sequence, and (b) a first region that is complementary to the fourth region of the precursor oligonucleotide sequence;
    • (ii) calculating the standard free energy of a capture reaction as the standard free energy of hybridization between the precursor nucleotide sequence and the first oligonucleotide and the standard free energy of hybridization between the first oligonucleotide and target oligonucleotide;
    • (iii) rejecting the precursor nucleotide sequence if the standard free energy of the capture reaction does not meet a certain criterion; and
    • (iv) repeating steps (i) to (iii) until a set of precursor nucleotide sequences meets the criteria; and
    • (v) producing the set of precursor nucleotide sequences.


      The criteria may be a negative free energy;


In another embodiment, there is provided a method for producing a set pf precursor nucleotide sequences comprising a plurality of barcode sequences, comprising:

    • (i) generating a set of precursor nucleotide sequences comprising each target oligonucleotide molecule, wherein each precursor nucleotide sequence comprises a third region that is conserved across all precursor nucleotide sequences, a fourth region that is unique for each target oligonucleotide molecule, and an fifth region that comprises the nucleotide sequence of a target oligonucleotide molecule;
    • (ii) calculating for each precursor nucleotide sequence the standard free energy of hybridization between the precursor nucleotide sequence and (a) a first oligonucleotide, comprising a second region that is complementary to the third region of the precursor oligonucleotide sequence, and (b) a first region that is complementary to the fourth region of the precursor oligonucleotide sequence;
    • (iii) calculating for each precursor nucleotide sequence the standard free energy of hybridization of folding;
    • (iv) calculating the standard free energy of a capture reaction as the standard free energy of hybridization between the precursor nucleotide sequence and the first oligonucleotide and the standard free energy of folding of the first oligonucleotide and the standard free energy of folding of the precursor oligonucleotide;
    • (v) rejecting the set of precursor nucleotide sequences if the standard free energy of the capture reaction for any precursor nucleotide sequence exceeds a certain criteria;
    • (vi) repeating steps (i) to (v) until a set of precursor nucleotide sequences meets the criteria; and
    • (vii) producing said set of precursor nucleotide sequences.


The criteria may be a selected from the group consisting of a maximum range of standard free energies of capture, a standard deviation of standard free energies of capture, and a difference between two ranks in a sorted list. The criteria may be a maximum range of no more than 5 kcal/mol between a lowest standard free energy of capture and a highest standard free energy of capture for the set of precursor nucleotide sequences. The maximum range may be no more than 2 kcal/mol.


In yet another embodiment, there is provided a method for purifying one or multiple target nucleic acid molecules from a sample comprising one or a plurality of species of precursor molecules, wherein each species of precursor molecule comprises an fifth region comprising a target nucleic acid molecule sequence, a fourth region comprising a sequence unique to the species of precursor molecule in the plurality of species of precursor molecules, defined as a barcode sequence of length n, wherein 2″ is greater than or equal to the number of unique target nucleic acid molecule sequences, a third region that is conserved across all precursor molecules, the method comprising:

    • contacting the sample with a capture probe library at temperature and buffer conditions conducive to hybridization;
    • wherein the capture probe library comprises a plurality of capture probe species, wherein each capture probe species comprises a first oligonucleotide comprising a first region comprising a nucleotide sequence of n nucleotides in length and a second region that is conserved across all capture probe species, wherein each nucleotide in the nucleotide sequence of n nucleotides in length is selected from two or more nucleotides and the first region is unique to each capture probe, and wherein the second region is complementary to the third region, and wherein the fourth region of each species of precursor molecule is complementary to the first region of a species of precursor molecule;
    • separating the plurality of species of precursor molecules hybridized to the plurality of capture probe species from the species of precursor molecules not hybridized to the plurality of capture probe species;
    • treating the plurality of species of precursor molecules hybridized to the plurality of capture probe species with a cleavage agent sufficient to site-specifically cleave the plurality;
    • of species of precursor molecules at a site to separate the fifth regions from at least a portion of the third and fourth regions;
    • recovering the fifth regions from the plurality of capture probe species and the at least a portion of the third and fourth regions, and thereby producing a purified target nucleic acid molecule or molecules.


Each capture probe species may further comprise a second oligonucleotide comprising a ninth region, wherein the ninth region is complementary to the second region. Each first oligonucleotide may further comprise a seventh region, each second oligonucleotide further comprises an eight region, and wherein the seventh region is complementary to the eight region. Each first oligonucleotide further may comprise a chemical moiety, and wherein the separating the plurality of species of precursor molecules hybridized to the plurality of capture probe species comprises surface capture of the chemical moiety. The chemical moiety may be selected from the group consisting of biotin, a thiol, an azide, an alkyne, a primary amine and a lipid. The first nucleotide hybridized with the precursor oligonucleotide may be the preferred ligand of an antibody or other receptor that mediate the surface capture of the complexes.


Recovering the fifth regions from the plurality of capture probe species and the at least a portion of the third and fourth regions may comprise a treatment selected from the group consisting of heating, introducing denaturants, washing with low salinity buffers, and introducing a nuclease. The site-specific cleavage may comprise a treatment selected from the group consisting of changing the temperature, changing the pH, and illuminating the plurality of species of precursor molecules hybridized to the plurality of capture probe species at a specific wavelength. The standard free energies of binding between each first oligonucleotide and a DNA sequence complementary to the entire sequence of the first oligonucleotide may be within 5 kcal/mol of each other. The two or more nucleotides at each nucleotide in the nucleotide sequence of n nucleotides in length maybe A or T, or may be G or C. The two or more nucleotides at each nucleotide in the nucleotide sequence of n nucleotides in length may be G or C for one or more nucleotides in the nucleotide sequence and A or T for one more nucleotides in the nucleotide sequence. The first region may comprise between 3 and 25 nucleotides. n may be between 3 and 60, 3 and 18, or 3 and 10 and not greater than the number of nucleotides in the first region. The first region may further comprise at least one nucleotide in addition to the nucleotide sequence of n nucleotides in length. The second region may further comprise between 8 and 200 nucleotides.


The barcode sequence of each species of precursor molecule is assigned based on a method comprising:

    • generating a set of precursor nucleotide sequences comprising each target oligonucleotide molecule, wherein each precursor nucleotide sequence comprises a third region that is conserved across all precursor nucleotide sequences, a fourth region that is unique for each target oligonucleotide molecule, and an fifth region that comprises the nucleotide sequence of the target oligonucleotide molecule;
    • calculating for each precursor nucleotide sequence the standard free energy of hybridization between the precursor nucleotide sequence and a first oligonucleotide, comprising a second region that is complementary to the third region of the precursor oligonucleotide sequence, and a first region that is complementary to the fourth region of the precursor oligonucleotide sequence;
    • calculating for each precursor nucleotide sequence the standard free energy of hybridization of folding;
    • calculating the standard free energy of a capture reaction as the standard free energy of hybridization between the precursor nucleotide sequence and the first oligonucleotide and the standard free energy of folding of the first oligonucleotide and the standard free energy of folding of the precursor oligonucleotide;
    • rejecting the set of precursor nucleotide sequences if the standard free energy of the capture reaction for any precursor nucleotide sequence exceeds a certain criteria; and
    • repeating the method until a set of precursor nucleotide sequences meets the criteria.


In still yet another embodiment, there is provided a capture probe library comprising: a plurality of oligonucleotides comprising a first plurality of oligonucleotides wherein each oligonucleotide of the first plurality of oligonucleotides comprises:

    • a first region comprising a first nucleotide sequence comprising at least 3 variable positions, wherein each variable position comprises a nucleotide selected from at least two possible nucleotides,
    • wherein the first nucleotide sequence comprising at least 3 variable positions is unique to each oligonucleotide, and
    • a second region comprising a second nucleotide sequence, wherein the second nucleotide sequence of the second region is conserved across each oligonucleotide in the first plurality of oligonucleotides,
    • A capture probe library comprising:
    • a plurality of oligonucleotides comprising a first plurality of oligonucleotides and a second plurality of oligonucleotides, wherein each oligonucleotide in the first plurality of species of oligonucleotides comprises
    • a first region comprising a nucleotide sequence comprising at least 3 variable positions, wherein each variable position comprises a nucleotide selected from at least two possible nucleotides,
    • wherein the nucleotide sequence comprising at least 3 variable positions is unique to each species of oligonucleotide, and
    • a second region comprising a nucleotide sequence, wherein the nucleotide sequence of the second region is conserved across each oligonucleotide in the first plurality of oligonucleotides,
    • wherein each oligonucleotide in the second plurality of oligonucleotides comprises a third region, wherein the third region is complementary to the second region.


      The standard free energies of binding between each oligonucleotide in the first plurality of oligonucleotides and a DNA sequence complementary to the entire sequence of the respective oligonucleotide in the first plurality of oligonucleotides may be within 5 kcal/mol of each other. The at least two possible nucleotides at each nucleotide in may be A or T, or may be G or C. The


      at least two possible nucleotides at each nucleotide in may be G or C for one or more nucleotides in the nucleotide sequence and A or T for one more nucleotides in the nucleotide sequence. The concentration of a second oligonucleotide may be greater than a sum of the concentrations of each oligonucleotide of the first plurality of oligonucleotides. The first region may comprise between 3 and 25 nucleotides. The number of variable positions in the first region may be between 3 and 60, between 3 and 18, or between 3 and 10, and not greater than a total number of nucleotides in the first region. The first region further may comprise at least one nucleotide in addition to the at least 3 variable positions. The second region may comprise between 8 and 200 nucleotides. The at least three variable regions may be contiguous or non-contiguous.


A further embodiment comprise an oligonucleotide library for the multiplexed capture of a set of desired precursor nucleic acid molecules comprising:

    • a plurality of species of precursor molecules, wherein each species of precursor molecule comprises
    • a third region comprising a nucleotide sequence that is conserved across all species of precursor molecules,
    • a fourth region comprising a barcode sequence comprising 3-60 nucleotides, an fifth region comprising a target nucleic acid molecule sequence that is unique to the species of precursor molecule in the plurality of species of precursor molecules, wherein the barcode sequence of each species of precursor molecule is different and wherein 2n is greater than or equal to the number of unique target nucleic acid molecule sequences; and
    • a capture probe library comprising a plurality of capture probe species, wherein each capture probe species comprises an oligonucleotide comprising a first region comprising a nucleotide sequence of n nucleotides in length, a second region that is conserved across all capture probe species, wherein each nucleotide in the nucleotide sequence of n nucleotides in length is selected from two or more nucleotides and the first region is unique to each capture probe, and wherein the second region is complementary to the third region, and wherein the fourth region of each species of precursor molecule is complementary to the first region of a species of precursor molecule.


      The standard free energies of binding between each species of first oligonucleotide in the plurality of capture probe species and a DNA sequence complementary to the entire sequence of the respective species of first oligonucleotide may be within 5 kcal/mol of each other. The two or more nucleotides at each nucleotide in the nucleotide sequence of n nucleotides in length may be A or T, or may be G or C. The two or more nucleotides at each nucleotide in the nucleotide sequence of n nucleotides in length may be G or C for one or more nucleotides in the nucleotide sequence and A or T for one more nucleotides in the nucleotide sequence.


      The a concentration of a second oligonucleotide may be greater than a sum of the concentrations of each species of first oligonucleotide. The first region may comprise between 3 and 25 nucleotides. n may be between 3 and 60, 3 and 18, or 3 and 10, and not greater than the number of nucleotides in the first region. The first region may further comprise at least one nucleotide in addition to the nucleotide sequence of n nucleotides in length. The second region may comprise between 8 and 200 nucleotides. The barcode sequence of each species of precursor molecule may be selected based on the method as set forth above. The at least one species of precursor molecule may be chemically synthesized or produced enzymatically. The enzyme used to produce the at least one species of precursor molecule may be a ligase or a polymerase.


In an additional embodiment, there is provided a method for purifying multiple target nucleic acid molecules from a sample comprising a plurality of precursor molecules, wherein the method comprises the steps of:

    • providing a plurality of nucleic acid probes, wherein each probe has a sequence complementary to a region of one of the precursor molecules and a first moiety sufficient to allow isolation of the probe;
    • adding the plurality of nucleic acid probes to a sample comprising the plurality of precursor molecules under conditions sufficient to promote hybridization of each nucleic acid probe to the region of the precursor molecule complimentary to the sequence thereby forming a plurality of probe-precursor complexes, wherein each precursor molecule comprises a different target nucleic acid molecule, and wherein the region of each precursor molecule does not comprise the target nucleic acid molecule; and
    • isolating the plurality of probe-precursor complexes via interaction with the first separating the target nucleic acid molecules from the plurality of probe-precursor.


Another embodiment provides for a method for producing a plurality of distinct target oligonucleotides each having a specified sequence, the method comprising:

    • (1) synthesizing a precursor oligonucleotide for each distinct target oligonucleotide, wherein the precursor comprises a third sequence, a fourth sequence, and a fifth sequence, wherein the third sequence is identical for all precursors, the fourth sequence comprises a barcode and is distinct for all precursors, and a fifth sequence corresponds to the target sequence,
    • (2) synthesizing a capture probe library of distinct oligonucleotides comprising a first sequence and a second sequence, wherein the first sequence comprises degenerate randomer nucleotides and wherein at least one first sequence is complementary to each fourth sequence, and the second sequence is complementary to the third sequence,
    • (3) mixing the precursors and the capture probe library in an aqueous hybridization buffer,
    • (4) removing precursor molecules not bound to the capture probes,
    • (5) enzymatically or chemically cleaving the fifth sequence from the remainder of the precursor molecules, and
    • (6) removing the capture probe library and the remainder of the precursor molecules.


      The first sequence may comprise an S degenerate nucleotide at certain positions and/or a W degenerate nucleotide at certain positions, but may not comprise an N degenerate nucleotide at any position, such that any degenerate variant of the first sequence is complementary to one or more fourth sequences, wherein S is a strong base, W is a weak base, and N is any base. The capture probes may be functionalized with a moiety permitting for rapid binding to a ligand, such as a moiety selected from a biotin, a thiol, an azide, or an alkyne. In step (4), eliminating precursor molecules not bound to capture probes may comprise adding particles that specifically bind the capture probe, followed by removal of supernatant solution. The particles may be selected from streptavidin-coated magnetic beads or streptavidin-coated agarose beads. The precursors may further comprise a deoxyuracil nucleotide or an RNA nucleotide, and cleavage of the fifth sequence comprises introduction of a uracil DNA glycosylase or an RNAse enzyme. The precursors may further comprise a photolabile or heat-labile moiety, and the cleaving of the fifth sequence comprises exposure of the solution to light of the appropriate wavelength or heating to the appropriate temperature. The fourth sequence may further comprise the “S” degenerate nucleotide at certain positions and/or the “W” degenerate nucleotide at certain positions, but does not comprise the “N” degenerate nucleotide at any position. The length of the first sequence may be between 5 and 50 nucleotides, and wherein the number of degenerate nucleotides is between 1 and 30, between 1 and 20, between 1 and 10, between 2 and 8, between 2 and 6, or between 3 and 5. The length of the second sequence may be between 5 and 50 nucleotides, and/or wherein the length of each target oligonucleotide is between 5 and 500 nucleotides.


In an additional embodiment, there is provided an oligonucleotide capture probe library comprising a first sequence and a second sequence, wherein the first sequence comprises degenerate randomer nucleotides comprising an “S” degenerate nucleotide at one or more positions and/or a “W” degenerate nucleotide at one or more positions, but does not comprise an “N” degenerate nucleotide at any position, and wherein the length of the first sequence is between 5 and 50 nucleotides, the number of degenerate nucleotides is between 1 and 30, and the length of the second sequence is between 5 and 50 nucleotides. The second sequence may comprise an “S” degenerate nucleotide at certain positions and/or a “W” degenerate nucleotide at certain positions, but does not comprise a “N” degenerate nucleotide at any position. The oligonucleotide capture probe library may be functionalized with a chemical moiety for rapid binding, selected from a biotin, a thiol, an azide, or an alkyne. The one or more of the oligonucleotide capture probes may further comprise a deoxyuracil nucleotide or an RNA nucleotide. The one or more of the oligonucleotide capture probes may further comprise a photolabile or heat-labile moiety. The length of the first sequence may be between 5 and 50 nucleotides, and wherein the number of degenerate nucleotides may be between 1 and 30. The length of the second sequence may be between 5 and 50 nucleotides. The library may have at least 8, at least 32, or at least 256 members. The library may have between 8 and 32 members, between 8 and 256 members, between 32 and 256 members, between 8 and 1024 members, between 32 and 1024 members, or between 256 and 1024 members. The library may be found on one or more substrates.


In still an additional embodiment, there is provided an aqueous solution comprising an oligonucleotide capture probe library, a plurality of precursor oligonucleotides and a set of precursor oligonucleotides, wherein:

    • the capture probe library comprises a first sequence and a second sequence, wherein
    • the first sequence comprises degenerate randomer nucleotides comprising an “S” degenerate nucleotide at certain positions and/or an “W” degenerate nucleotide at certain positions, but does not comprise an “N” degenerate nucleotide at any position, and wherein the length of the first sequence is between 5 and 50 nucleotides, the number of degenerate nucleotides is between 1 and 30, and the length of the second sequence is between 5 and 50 nucleotides,
    • each of the plurality of precursor oligonucleotides comprises a third sequence, a fourth sequence, and a fifth sequence, wherein the third sequence is identical for all precursors, the fourth sequence comprises a barcode and is distinct for all precursors, the second sequence is complementary to the third sequence, and at least one instance of a first sequence is complementary to each fourth sequence.


      The second sequence of the oligonucleotide capture probe library may comprise an “S” degenerate nucleotide at certain positions and/or a “W” degenerate nucleotide at certain positions, but may not comprise a “N” degenerate nucleotide at any position. The oligonucleotide capture probe library may be functionalized with a chemical moiety for rapid binding, selected from a biotin, a thiol, an azide, or an alkyne. The one or more of the oligonucleotide capture probes further may comprise a deoxyuracil nucleotide or an RNA nucleotide. The one or more of the oligonucleotide capture probes may further comprise a photolabile or heat-labile moiety. The length of the first sequence of the oligonucleotide capture probe library may be between 5 and 50 nucleotides, and the number of degenerate nucleotides may be between 1 and 30. The length of the second sequence of the oligonucleotide capture probe library may be between 5 and 50 nucleotides. The oligonucleotide capture probe library may have at least 8, at least 32, or at least 256 members. The oligonucleotide capture probe library may have between 8 and 32 members, between 8 and 256 members, between 32 and 256 members, between 8 and 1024 members, between 32 and 1024 members, or between 256 and 1024 members. The oligonucleotide capture probe library may be found on one or more substrates. The precursors may further comprise a deoxyuracil nucleotide or an RNA nucleotide, and cleavage of the fifth sequence comprises introduction of a uracil DNA glycosylase or an RNAse enzyme.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The word “about” means plus or minus 5% of the stated number.


It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein. Other objects, features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure. The disclosure may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1: Schematic overview of one embodiment of Stoichiometric Nucleic Acid Purification (SNAP). A sample mixture containing two precursors of oligonucleotide targets also contains a number of truncation synthesis products that are not desired. Through the course of the method described in this disclosure, full length target oligonucleotides are produced in roughly equal stoichiometry.



FIG. 2: Schematic of a capture probe library and corresponding set of target sequences. Within the targets libraries, region 3 is conserved while regions 4 and 5 are different for each target sequence. Similarly, within a library of capture probes region 2 is conserved, while region 1 contains variable positions with two or more nucleosides being possibly present at each variable position. (SEQ ID NOS: 404-409)



FIG. 3: Multiplexed oligonucleotide purification workflow. The process consists of 6 sequential steps. In step 3, solid phase consists of functionalized magnetic beads that enable the phase separation in steps 4 and 6. Depending on whether the user desires target sequences with or without the universal region 3 and barcode region 4, in step 5 either heat/NaOH denaturation or restriction enzyme cleavage can be used after the purification to separate the final products from the library and magnetic beads.



FIG. 4: Removal of regions 3 and 4 from target sequences using an enzyme. The desired region 5 can be enzymatically cleaved from the 5′ regions 3 and 4 used for purification, for applications where such sequences are undesirable. Site-specific cleavage can be implemented through use of (a) uracil DNA glycosylase alone or in a formulation containing DNA glycosylase-lyase Endonuclease VIII—commercially known as USER, (b) RNAse, (c) FokI endonuclease, or other methods known to one of ordinary skill in the art. The sequence or chemical composition of regions 3 and 4 may be adapted to accommodate the anticipated enzymatic cleavage process. (SEQ ID NOS: 410-417 and 251)



FIG. 5: Use of multiple barcodes for the same target sequence increases its concentration in the final purified mixture. Degenerate nucleotides (i.e., S=G or C and W=A or T) within the barcode region 4 facilitates the achievement of arbitrary desired stoichiometric ratios of targets by avoiding individual synthesis of a number numbers of precursor oligonucleotides. (SEQ ID NOS: 418-421)



FIG. 6: Proof of concept results using fluorescent labelled oligonucleotides, assayed through fluorescent polyacrylamide gel electrophoresis. 160 pmol of a capture probe library biotinylated in 3′ end, comprising 64 different region 1 sequences, is incubated with 64 synthetic unpurified precursor oligonucleotides each at 10 pmol. Each precursor oligonucleotide has a uniquely assigned region 4, complementary to one and only one instance of region 1 on the capture probe species. Lane 1 shows the length distribution of Precursor 1, and Lane 2 shows the length distribution of Precursor 1 after undergoing SNAP, but without cleavage of regions 3 and 4. Lane 3 shows the SNAP product after cleavage of regions 3 and 4. Lane 4 shows the length distribution of the corresponding commercially provided PAGE-purified oligo as comparison. Lanes 5-10 show that, regardless of initial stoichiometric ratio of the 3 Precursors, the final stoichiometry of the SNAP products are close to 1:1:1. The SNAP protocol used for this series of experiments is as follows: The capture probe library and Precursors are allowed to hybridize for 2 hr at 60° C. in 0.5M NaCl pH 7.5. Subsequently, 3 mg of streptavidin coated magnetic beads (pre-washed with the same incubation buffer) are added to the oligonucleotide mixture to a final volume of 100 μL, and incubated for 30 min at 60° C., with the sample being rocked by a shaker. The supernatant is then discarded and the magnetic beads are washed twice in the incubation buffer and one time in the buffer to be used for the subsequent enzymatic cleavage. For lane 2, the full-length precursors are eluted using 50% v/v formamide at 95° C. for 5 to 15 min For lane 3, the beads were re-suspended in USER buffer, and 2 enzymatic units of USER enzyme mix were added to achieve a final volume of 25 μL; this mix was then incubated for 1 hour at 37° C. Finally supernatant containing the desired purified target is extracted.



FIGS. 7A-B. Characterization of purity and stoichiometry for multiplexed SNAP. 64 separate Precursors (10 pmol each) were simultaneously purified via SNAP. (FIG. 7A) Next Generation Sequencing was used to characterize the purity of the 64 oligos, where the purity is operationally defined as the number of perfectly aligned reads divided by the number of reads aligned by Bowtie 2. The purity of the SNAP products are significantly higher than that of individually PAGE purified oligonucleotides (median 79% vs. 61%). (FIG. 7B) Digital droplet PCR was used to evaluate the stoichiometries of the 64 SNAP product oligonucleotides.



FIG. 8: Characterization of purity for 256-plex SNAP purified (2.5 pmol of each Precursor).



FIGS. 9A-D: Four possible variations in design of the capture probe libraries.



FIG. 10: Experimental results on double-stranded capture probe article shown in FIG. 9B. SNAP was performed using 640 pmol of capture probe biotinylated in 5′end, 1280 pmol of protector strand, and 40 pmol of one unpurified Precursor. Note that, unlike in FIG. 6, only a single Precursor species is introduced, so that the Capture Probes are NOT saturated by Precursors. SNAP protocol is otherwise similar to FIG. 6 caption. Lane 1 corresponds to the unpurified Precursor, Lane 2 corresponds to the PAGE-purified Target oligo, Lane 3 corresponds to the SNAP product without cleavage of regions 3 and 4, and Lane 4 corresponds to the final SNAP product. Lanes 5-10 show that, regardless of initial stoichiometric ratio of the 3 Precursors, the final stoichiometry of the SNAP products are close to 1:1:1.



FIG. 11: Purification of RNA transcripts produced from a synthetic DNA template that comprises regions 3 and 4.



FIG. 12 Cumulative distribution of ΔG°rxn for two different randomer sequences, each producing 64 instances. Using an SWSWSW library (flanked by CA in 5′ end and C in 3′ end) produces a tight thermodynamics range of 0.8 kcal/mol window. In contrast, using a TGANNN library results in a spread of more than 4 kcal/mol.



FIGS. 13A-C: Algorithm for the design of probe libraries and assignment of barcodes (region 4).



FIG. 14: Workflow for the characterization of purity of oligonucleotides libraries through NGS. The oligonucleotides share a universal region at the 3′ end, which is used to align and enzymatically extend one short sequence used as primers. Upon the phosphorylation of the 5′ end of the newly formed double stranded library, adaptors containing sequencing primers are enzymatically attached. Finally, the resulting library is amplified for 3 PCR cycles, to introduce the P7 and P5 sequences used for the cluster generation and the consequent sequencing with an Illumina instrument.



FIG. 15: Workflow for the characterization of stoichiometries within oligonucleotides libraries through digital droplet PCR (ddPCR). The oligonucleotides of the library share a common region at 3′ end for the priming with a reverse primer, which is added as well as the master mix contain the enzyme and the EvaGreen dye for ddPCR reaction. The reaction mixture is distributed in 64 equal aliquots, each of which receives one forward primer specific for one oligonucleotide sequence within the library. Subsequently oil is added to every sample, which undergoes to the emulsion process. Finally, upon the PCR reaction, the fluorescent reader is used to determine the ratio between the droplets-containing amplification product and those that are empty, ratio that give a statistical quantification of the template molecule that have been amplified.





DETAILED DESCRIPTION

The goal of this disclosure is outlined shown in FIG. 1: different precursor oligonucleotides are synthesized with various yields and purities, and pooled together to form an input oligonucleotide pool. Through a process of SNAP purification, an output pool of target oligonucleotides is produced with no truncation products, and exhibiting a desired stoichiometric ratio (1:1 in FIG. 1).


In certain aspects of the present disclosure, toehold probes with a randomer toehold sequence are used to capture artificially designed 5′ sequence of the target oligonucleotides. Because the probes are toehold probes which are selective to single nucleotide variations, even truncated synthesis products one nucleotide shorter than the full-length product will not be efficiently captures.


I. PRECURSOR OLIGONUCLEOTIDES

A full-length precursor oligonucleotide comprises three regions, labeled as 3, 4, and 5 in FIG. 2. Region 3 is also referred to as the validation region, and the sequence of region 3 is conserved across all precursor species. Region 4 is also referred to as the barcode, and the sequence of region 5 is unique to each precursor species. Region 5 is referred to as the target sequence, and is the only portion of the oligonucleotide that should remain after the purification process. Across different precursor species, some region 8's may be unique, while others may be redundant. In some embodiments, the nucleotide to the 5′ of region 5 is a modified nucleotide (e.g., a deoxyuracil nucleotide, or an RNA nucleotide) that can be site-specifically cleaved.


Because DNA synthesis (both chemical and enzymatic) is imperfect, there will exist truncation products in which precursors lack one or more nucleotides at either the 5′ end (chemical synthesis) or the 3′ end (enzymatic synthesis).


II. CAPTURE PROBE LIBRARY


FIG. 2 shows one preferred embodiment of the capture probe library used to perform SNAP purification for chemically synthesized oligonucleotides with truncations at the 5′ end. In this embodiment, the library comprises two types of oligonucleotides: the probe oligonucleotides (comprising regions 1 and 2). In certain aspects, the probe oligonucleotides are functionalized at the 3′ end with a biotin, in order to allow capture by streptavidin-functionalized magnetic beads.


The sequence of region 1 is designed and synthesized as a randomer library, in which one or several positions contain a mixture of multiple nucleotides. The complement of every precursor species' barcode (region 4) should exist as an instance of the region 1 randomer library.


The sequence of region 2 is designed to be complementary to the sequence of region 3 on precursors.


III. SEQUENCE DESIGN OF RANDOMER REGION 1

The variable positions and allowable nucleotides at each variable position should be designed such that the standard free energy of hybridization of each instance region 1 to its perfect complement are similar. In some embodiments, the sequence of region 1 comprises S (strong, mixture of G and C) and W (weak, mixture of A and T) degenerate nucleotides.


As one example of an undesirable sequence construction, if region 4 is designed as a 7nt NNNNNNN region, then both GCGCGCG and TATATAT members will be present. The ΔGo of these two members pairing with their complements at 37° C. in 1M Na+ are −13.23 kcal/mol and −4.38 kcal/mol, respectively, according to SantaLucia Jr, J., & Hicks, D. (2004). The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415-440. This 9 kcal/mol difference can result in the GCGCGCG member capturing its target with >99.9% yield while the TATATAT member capturing its target with <0.1% yield; such a large difference in capture yield would be clearly undesirable for achieving uniform or ratiometric product quantity/concentration distributions.


For this reason, the nucleosides present at variable positions are designed to be either S or W. That is to say, some variable positions contain either an A or T nucleoside but not G or C, while other variable positions contains G or C but not A or T. Based on published literature parameters, there is only a maximum difference of 0.17 kcal/mol per base stack for SW and for WS stacks, at 37° C. in 1M Na+.


IV. SEQUENCE-SPECIFIC CAPTURE

In those instances where the number of different probes is equal the number of the target sequences, and the total concentration of probes is lower than the total concentration of target, any instance of region 1 only hybridizes to its perfectly complement in region 4, as any other non-specific hybridization will be outcompeted.


Consequently, if the probe oligonucleotide library is synthesized such that all instance sequences are equally represented, and if the concentration of all precursors exceed that of their corresponding probe sequences, then the amount of precursor captured should be roughly stoichiometric, regardless of the initial stoichiometric ratio between the precursors. As a numerical example, if the sequence of region 1 is “GWSWSWST”, then there are 26=64 instance sequences. Assuming a total probe concentration of 6.4 μM, each sequence instance would have a concentration of approximately 100 nM. For an initial precursor pool in which the concentrations of each precursor species ranges between 200 nM and 10 μM, the amount of each precursor bound to the probe will be limited by probe instance sequence concentration to a maximum of 100 nM, except insofar as off-target hybridization between precursors and their non-cognate probe instance sequences hybridize.


As another mathematical example, a probe library with 12 variable position, and 2 possible nucleotides at each position is comprised of 212=4096 members. Assuming a total amount of 4 nanomoles (nmol) of the library, each member is expected to be present at quantity of roughly 1 pmol. This library is suitable for purification of up to 4096 targets, each with quantity of >10 pmol. Array oligonucleotide synthesis providers often produce panels of oligonucleotides at either the 10 pmol or 100 pmol scale.


V. SEPARATION OF PRECURSORS BOUNDED TO PROBES

The precursor oligonucleotides bound to the probe oligonucleotides are separated from other precursors using the probes as marker for recovery, through the use of a solid support or enzymatic degradation of unbound molecules, for example, using an exonuclease (e.g., 5′-3′) for single-strand digestion. In a particular embodiment, the probe oligonucleotides are biotin-functionalized at the 3′ end, and streptavidin-functionalized magnetic beads are added to solution after the hybridization reaction between the precursors, protectors, and probes. Washing the magnetic bead suspension in the vicinity of a magnetic removes unbound molecules.


VI. REMOVAL OF REGIONS 3 AND 4 FROM TARGETS

For many applications with purified pools of target oligonucleotides, the sequences of regions 3 and 4 would be an undesirable artifact. The sequence or composition of these regions may be designed to facilitate enzymatic removal of these regions from the desired target sequence after surface-based purification. FIG. 4 shows several strategies for enzymatically cleaving the captured target sequences after region 4 to remove all artifact sequences, or after region 3 to remove the purification sequence but not the barcode.


VII. SNAP PURIFICATION WORKFLOW


FIG. 3 shows one embodiment of the overall SNAP purification workflow. Hybridization durations, buffers, and temperatures vary depending on the concentration of the probe and precursor oligonucleotides, and reasonable parameter values are known to those ordinary in the art of nucleic acid hybridization probes. The capture of biotin-functionalized probes by magnetic beads and subsequent wash protocols are typically provided by suppliers of biotin-functionalized magnetic beads (e.g., Thermo Fisher Dynabeads, New England Biolabs streptavidin magnetic beads). The USER enzyme (e.g., from New England Biolabs) can be used to site-specifically cleave precursor oligonucleotides at dU positions.


VIII. RATIOMETRIC CONCENTRATIONS OF PURIFIED TARGETS

Through the use of multiple barcodes (region 4) for the same target sequence (region 5), it is possible to adjust the stoichiometric ratios of different target sequences after SNAP purification. FIG. 5 shows an example in which 3 different target sequences are sought to be purified in a 1:2:6 ratio.


The number of available barcodes based on variable positions determines the range of available stoichiometric ratios and number of sequences possible. For example, a probe library with 12 variable positions and 2 possible nucleotides at each position contains 212=4096 sequence instances. The sum of all integer stoichiometry ratios among different target sequences must sum to 4096 (or less). For example, it is possible to purify a library of 2097 target sequences, in which 2096 target sequences are at equal stoichiometry to one another, and the last target sequence is present at 1000× excess.


Importantly, degenerate randomer sequences can also be incorporated in region 4 of the precursor sequences, in order to reduce the cost of precursor synthesis. For example, in FIG. 5, Target 2 occupies two sequence instances of the barcode through the use of a degenerate W in region 7.


In some instances, to yield uniform concentrations of target oligonucleotides in the final pool, the capture probe library should be at a significantly lower concentration than the input target oligonucleotide sample. For example, the full-length product of Target 1 is initially at 5 μM and the full-length product of Target 2 is initially at 8 μM, each member of the capture probe library should be kept below 5 μM, such as 1 μM. In such an instance, the purification yield may be lower than for HPLC and PAGE methods for single targets but will provide a uniform final concentration of target molecules. In instances where a uniform final target concentration is not needed, the yield will not be reduced in such a way.


IX. BARCODE ASSIGNMENT BASED ON TARGET SEQUENCE

To simultaneously achieve high sequence specificity and high hybridization yield, the standard free energies of hybridization (ΔG°Hyb) between the different precursor and their respective matched probe sequence instances must be similar. Naive design of the validation region sequence (region 3) and assignment of barcodes (region 4) may result in precursor oligonucleotides with significant secondary structure between region 5 and regions 3 and 4, resulting in ΔG°Hyb significantly more positive than expected, in turn leading to lower capture yields. Consequently, it is suggested that the sequences of regions 3 and 4 be rationally designed given desired target sequences, so that similar secondary structure is observed for all precursor sequences.


X. EXAMPLES

The following examples are included to demonstrate preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of embodiments, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the disclosure.


Example 1—Stoichiometric SNAP Purification


FIG. 6 shows data demonstrating proof-of-concept of the SNAP purification technique. Denaturing polyacrylamide gel electrophoresis is used to visualize and quantitate the purity and concentration of different oligonucleotide species. Lane 1 shows a chemically synthesized precursor oligonucleotide, and lane 4 shows the corresponding chemically synthesized target oligonucleotide. Both the precursor and the target oligonucleotides were synthesized with a 3′ FAM fluorophore functionalization to allow easy visualization. Lanes 2 shows the captured precursor molecules before USER enzyme treatment to remove regions 3 and 4, and Lane 3 shows the final purified product after USER enzyme treatment. The relative lack of truncation bands in Lanes 2 and 3 indicate that truncation products have been removed.


Lane 5 shows a mixture of 3 precursor oligonucleotides of different lengths (100nt, 90nt, and 80nt), prepared at a nominal stoichiometric ratio of 1:1:1. Lane 6 shows the output of the SNAP purification protocol. The stoichiometric ratio of the purified target oligonucleotides was quantitated to be 1.2:1:1.5. Lane 7 and 8 show a similar set of experiments, except the 3 precursor oligonucleotides were nominally prepared at 1:5:25 and the SNAP-purified products were observed to be at 1.2:1:1.7, and is closer to the designed 1:1:1 stoichiometric than the precursors. Lane 9 and 10 show a similar set of experiments, except the 3 precursor oligonucleotides were nominally prepared at 5:25:1 and the SNAP-purified products were observed to be at 1.2:1:0.5.



FIGS. 7A-B show data demonstrating purity and stoichiometry attainable by means of SNAP purification as measured by Next Generation Sequence and digital droplet PCR. FIG. 7A shows that the median of reads perfectly matching the desired sequence is about the 80%, in case of SNAP purification, which is greater that the median from PAGE purification which is about 60% and the one from unpurified oligos, which is about 55%. FIG. 7B shows the concentration of the individual sequences as measured through digital droplet PCR, using target specific primers. After the SNAP purification the concentration of the oligo is within a factor of two for the 95% of the sequences of the pool.



FIG. 11 shows data demonstrating purity for a 256-plex, as measured by NGS. Also in this case the fraction of perfect reads for SNAP purified oligo is close the 80%.


Example 2—Purification of Enzymatically-Produced Precursors


FIG. 10 shows an example embodiment of purifying enzymatically produced precursors, in this case a transcribed RNA species. Chemical synthesis of RNA oligonucleotides is significantly (8-fold) more expensive than DNA synthesis, and limited to shorter lengths (typically <50nt). In vitro transcribed RNA using RNA polymerase and a corresponding DNA template sequence can produce economically produce large quantity of desired RNA target sequences that is also significantly longer than chemically synthesized RNA, but requires labor-intensive Polyacrylamide Gel electrophoresis (PAGE) purification. The present SNAP purification methods can significantly reduce the labor needed to produce RNA molecules, especially in highly multiplexed settings.


Because enzymatically produced precursors disproportionately exhibit truncations and errors at the 3′ end rather than the 5′ end, the DNA template sequence is designed so that the validation and barcode regions (3 and 4, respectively) will be positioned at the 3′ end of the transcript. The stoichiometric capture of full-length precursor RNA transcripts occurs similarly to that of DNA oligonucleotides described previously. An RNAse H enzyme may be used to remove regions 6 and 7 from the precursor to leave only the desired target RNA sequence, because RNAse H will selectively cleave RNA at regions where it is hybridized to DNA.


Example 3—Probe Design Variations


FIGS. 9A-D show a few possible variations in design of the probe and protector sequences. The relative ordering of the regions may be altered, as long as the complementarity relationship between the regions are preserved (e.g., region 2 is complementary to region 3).



FIG. 9B In those instances when the number capture probes is higher than the number or target sequences, as well as in those case where multiple validation regions (region 2) are used simultaneously, the purpose of the protector oligonucleotide and of regions 7 and 8, is to ensure sequence-specific hybridization of each precursor to its matched probe oligonucleotide. Zhang, D. Y., Chen, S. X., & Yin, P. (2012). Optimizing the specificity of nucleic acid hybridization. Nature chemistry, 4(3), 208-214. and Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., & Zhang, D. Y. (2015). Continuously tunable nucleic acid hybridization probes. Nature methods, 12(12), 1191-1196. shows that the competitive hybridization between precursors and the protectors is specific to even single-nucleotide changes in sequence when the sequences of the probe and protector are designed appropriately.


This specificity is useful for 2 purposes: First, it limits the off-target hybridization of precursors to non-cognate probe sequence instances that are not perfectly complementary. Second, it prevents the hybridization of imperfectly synthesized precursors that lack any nucleotide in regions 3 or 4.


Unless explicitly stated otherwise, “complementary” in this document refers to “partially or fully complementary”. Two sequences are defined to be “partially complementary” when over 80% of the aligned nucleotides of one sequence is complementary to corresponding nucleotides of the other sequence.


Tables 1-4, below, shows a hypothetical set of sequences for the precursors, capture probe and protector that could be used in methods of the present disclosure. In the sequence of the capture probe, S or W indicates that all variants are included in the capture probe library. For example, both A and T would be present in the mixture of capture probes at each W as part of the randomer library of capture probes.









TABLE 1





List of 64 precursor for the 64plex described in FIGS. 7A-B


















Name
Region 3
Region 4
Region 5





NGSPlex64_
TAGGTGC
TGTGAC
GCCCGTCGGCATGTATTAGCTCTAGAATTACCACAGTGCA


1
GGTCGCA
TCACTG
ACCTTTCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 3



1
NO: 2






NGSPlex64_
TAGGTGC
TGTCTG
GGGGCCGGAGAGGGGCTGACCGGGTTGGTTTTGATGCG


2
GGTCGCA
TGTCTG
GTGCTCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 5



1
NO: 4






NGSPlex64_
TAGGTGC
TGTCAC
CCCTGATTCCCCGTCACCCGTGGTCACCATGGTAGTGGC


3
GGTCGCA
ACTCTG
CATAGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 7



1
NO: 6






NGSPlex64_
TAGGTGC
TGTGAC
TTTTTCGTCACTACCTCCCCGGGTCGGGAGTGGGTGAATT


4
GGTCGCA
ACTCTG
ATGCTGAACGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 9



1
NO: 8






NGSPlex64_
TAGGTGC
TGTGAG
GCCCGCCCGCTCCCAAGATCCAACTACGAGCTTTTAGGT


5
GGTCGCA
AGACTG
CAGTGGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 11



1
NO: 10






NGSPlex64_
TAGGTGC
TGTGTC
GGCCGTCCCTCTTAATCATGGCCTCAGTTCCGAAACCTAC


6
GGTCGCA
TGTCTG
ACATTATCTGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 13



1
NO: 12






NGSPlex64_
TAGGTGC
TGTGAG
GGTATCTGATCGTCTTCGAACCTCCGACTTTCGTTCTGGA


7
GGTCGCA
TCACTG
CATGCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 15



1
NO: 14






NGSPlex64_
TAGGTGC
TGTCTC
TGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCATGCTTC


8
GGTCGCA
AGACTG
TACTCCTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 17



1
NO: 16






NGSPlex64_
TAGGTGC
TGTCAC
CCTGTCCGTGTCCGGGCCGGGTGAGGTTTCCCGTGCACT


9
GGTCGCA
TCACTG
AGGGCTGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 19



1
NO: 18






NGSPlex64_
TAGGTGC
TGTGAC
GTAACTAGTTAGCATGCCAGAGTCTCGTTCGTTATCGGAT


10
GGTCGCA
TGTCTG
GGCCTAGTATAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 21



1
NO: 20






NGSPlex64_
TAGGTGC
TGTCAC
GCCCCGGACATCTAAGGGCATCACAGACCTGTTATTCCTT


11
GGTCGCA
TCTCTG
GTTGAAGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 23



1
NO: 22






NGSPlex64_
TAGGTGC
TGTCTC
GGTAGTAGCGACGGGCGGTGTGTACAAAGGGCAGGTGA


12
GGTCGCA
AGTCTG
GTATTTGATTCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO:25



1
NO: 24






NGSPlex64_
TAGGTGC
TGTCTC
GGCGCTGGGCTCTTCCCTGTTCACTCGCCGTTACTATGTT


13
GGTCGCA
TGACTG
CGGCCTTTTTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 27



1
NO: 26






NGSPlex64_
TAGGTGC
TGTGTG
TACCACCCGCTTTGGGCTGCATTCCCAAGCAACCCCCCC


14
GGTCGCA
TGACTG
GAAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 29



1
NO: 28






NGSPlex64_
TAGGTGC
TGTCTG
CTTTCCCTTACGGTACTTGTTGACTATCGGTCTCGTAAAC


15
GGTCGCA
ACACTG
GGTTAGATCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 31



1
NO: 30






NGSPlex64_
TAGGTGC
TGTCTC
GGCGGACTGCGCGGACCCCACCCGTTTACCTCTTAGGTA


16
GGTCGCA
TCTCTG
TATAACGCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 33



1
NO: 32






NGSPlex64_
TAGGTGC
TGTGAC
GGTGGAAATGCGCCCGGCGGCGGCCGGTCGCCGGTACA


17
GGTCGCA
TCTCTG
CAGTTGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 35



1
NO: 34






NGSPlex64_
TAGGTGC
TGTGTG
CCTTCCCCGCCGGGCCTTCCCAGCCGTCCCGGAGCAAGA


18
GGTCGCA
ACTCTG
TTGTTTACAGAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 37



1
NO: 36






NGSPlex64_
TAGGTGC
TGTCAG
GGGATTCGGCGAGTGCTGCTGCCGGGGGGGCTGTAGGA


19
GGTCGCA
TGTCTG
CAACGTACAACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 39



1
NO: 38






NGSPlex64_
TAGGTGC
TGTGAC
GCCGTGGGAGGGGTGGCCCGGCCCCCCCACGAGGACTA


20
GGTCGCA
TGACTG
CTCAAGAATTGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 41



1
NO: 40






NGSPlex64_
TAGGTGC
TGTGAG
GCCGACCCCGTGCGCTCGCTCCGCCGTCCCCCTCTGCAC


21
GGTCGCA
ACTCTG
GCGGACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 43



1
NO: 42






NGSPlex64_
TAGGTGC
TGTGAG
GTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTGGTCA


22
GGTCGCA
TGTCTG
TTTAGCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 45



1
NO: 44






NGSPlex64_
TAGGTGC
TGTCTG
CCAGGCATAGTTCACCATCTTTCGGGTCCTAACACGGAGC


23
GGTCGCA
TCACTG
CCATTACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 47



1
NO: 46






NGSPlex64_
TAGGTGC
TGTGTG
GGGTGCGTCGGGTCTGCGAGAGCGCCAGCTATCCTATAA


24
GGTCGCA
AGTCTG
GCGCCGTCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 49



1
NO: 48






NGSPlex64_
TAGGTGC
TGTGTC
GTTCGGTTCATCCCGCAGCGCCAGTTCTGCTTACCGTGC


25
GGTCGCA
TCACTG
CACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 51



1
NO: 50






NGSPlex64_
TAGGTGC
TGTGTG
GGATTCCGACTTCCATGGCCACCGTCCTGCTGTCTGAAAA


26
GGTCGCA
AGACTG
AATTTCTGCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 53



1
NO: 52






NGSPlex64_
TAGGTGC
TGTCAC
ACGCTCCAGCGCCATCCATTTTCAGGGCTAGTTGACGCTA


27
GGTCGCA
AGACTG
TGGCATCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 55



1
NO: 54






NGSPlex64_
TAGGTGC
TGTGTC
GCAGCGGCCCTCCTACTCGTCGCGGCGTAGCGTCCCATT


28
GGTCGCA
TCTCTG
GAGCAGTTGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 57



1
NO: 56






NGSPlex64_
TAGGTGC
TGTCAG
ACCCTTCTCCACTTCGGCCTTCAAAGTTCTCGTTTCTAGA


29
GGTCGCA
ACACTG
GCCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 59



1
NO: 58






NGSPlex64_
TAGGTGC
TGTCAC
ACTCTCCCCGGGGCTCCCGCCGGCTTCTCCGGGATGTGA


30
GGTCGCA
ACACTG
TGGGAGTACCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 61



1
NO: 60






NGSPlex64_
TAGGTGC
TGTCAC
GCCAGAGGCTGTTCACCTTGGAGACCTGCTGCGGACCGC


31
GGTCGCA
TGTCTG
TCACAAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 63



1
NO: 62






NGSPlex64_
TAGGTGC
TGTCTG
CCCAGCCCTTAGAGCCAATCCTTATCCCGAAGTTATCAAT


32
GGTCGCA
AGACTG
CAGTTGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 65



1
NO: 64






NGSPlex64_3
TAGGTGC
TGTGTC
GCTCCCCCGGGGAGGGGGGAGGACGGGGAGCGGGGTT


3
GGTCGCA
AGTCTG
GAGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 67



1
NO: 66






NGSPlex64_
TAGGTGC
TGTGAC
CCCCTGC


34
GGTCGCA
AGTCTG
CGCCCCGACCCTTCTCCCCCCGCCGCCGTATCTAAGGTC



SEQ ID NO:
SEQ ID
CCGTCTCGTACGGTTAAGAGCC



1
NO: 68
SEQ ID NO: 69





NGSPlex64_
TAGGTGC
TGTCTG
GGCGGGGGGGACCGGCCCGCGGCCCCTCCGCCGCCGT


35
GGTCGCA
AGTCTG
CATGTCCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 71



1
NO: 70






NGSPlex64_
TAGGTGC
TGTGAG
GGATTCCCCTGGTCCGCACCAGTTCTAAGTCGGCTAGGG


36
GGTCGCA
AGTCTG
AAGGCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 73



1
NO: 72






NGSPlex64_
TAGGTGC
TGTCAG
GGCTACCTTAAGAGAGTCATAGTTACTCCCGCCGTGGCC


37
GGTCGCA
TCTCTG
CTTCACCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 75



1
NO: 74






NGSPlex64_
TAGGTGC
TGTGAG
CACCTCTCATGTCTCTTCACCGTGCCAGACTAGAGGCGG


38
GGTCGCA
TGACTG
ATCCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 77



1
NO: 76






NGSPlex64_
TAGGTGC
TGTCTC
GCCCCTCGGGGCTCGCCCCCCCGCCTCACCGGGTCCGG


39
GGTCGCA
ACACTG
AACGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 79



1
NO: 78






NGSPlex64_
TAGGTGC
TGTGTG
GCCCTTCTGCTCCACGGGAGGTTTCTGTCCTCCCTAGTTT


40
GGTCGCA
ACACTG
GCCAGACCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 81



1
NO: 80






NGSPlex64_
TAGGTGC
TGTCTC
GCTTGGCCGCCACAAGCCAGTTATCCCTGTGGTAATGATC


41
GGTCGCA
TGTCTG
TCTCTGAGTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 83



1
NO: 82






NGSPlex64_
TAGGTGC
TGTGTG
GCGGTTCCTCTCGTACTGAGCAGGATTACCATGGCGGCC


42
GGTCGCA
TGTCTG
AAATATAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 85



1
NO: 84






NGSPlex64_
TAGGTGC
TGTCTG
CCGAGGCTCCGCGGCGCTGCCGTATCGTTCCGCCTATGG


43
GGTCGCA
TCTCTG
AGGAGGACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 87



1
NO: 86






NGSPlex64_
TAGGTGC
TGTGAC
AGGTCGTCTACGAATGGTTTAGCGCCAGGTTCCCCAGCC


44
GGTCGCA
ACACTG
TCAGGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 89



1
NO: 88






NGSPlex64_
TAGGTGC
TGTCAC
CATCTTTCCCTTGCGGTACTATATCTATTGCGCCAGCCTC


45
GGTCGCA
TGACTG
CCCTCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 91



1
NO: 90






NGSPlex64_
TAGGTGC
TGTCAG
GACGGGTGTGCTCTTTTAGCTGTTCTTAGGTAGCTAGTAT


46
GGTCGCA
AGTCTG
CTCGTCCCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 93



1
NO: 92






NGSPlex64_
TAGGTGC
TGTGTC
GCTTTTAGGCCTACTATGGGTGTTAAATTTTTTACTCTCTC


47
GGTCGCA
ACACTG
TACAAGTCGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 95



1
NO: 94






NGSPlex64_
TAGGTGC
TGTCTG
AGGGTGATAGATTGGTCCAATTGGGTGTGAGGAGTTCAA


48
GGTCGCA
TGACTG
CGTGTATTGTAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 97



1
NO: 96






NGSPlex64_
TAGGTGC
TGTGTC
GACTTGTTGGTTGATTGTAGATATTGGGCTGTTAATTGTCA


49
GGTCGCA
ACTCTG
GTTTGTTGTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 99



1
NO: 98






NGSPlex64_
TAGGTGC
TGTCTG
GTAAGATTTGCCGAGTTCCTTTTACTTTTTTTAACCTTTCCT


50
GGTCGCA
ACTCTG
TATGCCAAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 101



1
NO: 100






NGSPlex64_
TAGGTGC
TGTCAG
GCTGAACCCTCGTGGAGCCATTCATACAGGTCCCTGTCC


51
GGTCGCA
AGACTG
ACCGGCTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 103



1
NO: 102






NGSPlex64_
TAGGTGC
TGTCAG
GCTCGGAGGTTGGGTTCTGCTCCGAGGTCGCCCCACTTG


52
GGTCGCA
TGACTG
CATCCTTTGGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 105



1
NO: 104






NGSPlex64_
TAGGTGC
TGTGTC
GGATTGCGCTGTTATCCCTAGGGTAACTTGTTCCGCAGAC


53
GGTCGCA
AGACTG
GTTGTGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 107



1
NO: 106






NGSPlex64_
TAGGTGC
TGTCAG
GCCTTATTTCTCTTGTCCTTTCGTACAGGGAGGAATTTGAA


54
GGTCGCA
ACTCTG
TATCTGTTTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 109



1
NO: 108






NGSPlex64_
TAGGTGC
TGTCAG
TTTCCCGTGGGGGTGTGGCTAGGCTAAGCGTTTTGCATTT


55
GGTCGCA
TCACTG
CATAGACCTTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 111



1
NO: 110






NGSPlex64_
TAGGTGC
TGTCTC
CAGGTGAGTTTTAGCTTTATTGGGGAGGGGGTGATCTACT


56
GGTCGCA
ACTCTG
GCATCGTTAGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 113



1
NO: 112






NGSPlex64_
TAGGTGC
TGTGTC
GGCTCGTAGTGTTCTGGCGAGCAGTTTTGTTGATTTGAGT


57
GGTCGCA
TGACTG
CTAAGGAGTAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 115



1
NO: 114






NGSPle
TAGGTGC
TGTGTG
GTACTTGCGCTTACTTTGTAGCCTTCATCAGGGTTTGGGG


x64_58
GGTCGCA
TCACTG
TTACCTGCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 117



1
NO: 116






NGSPle
TAGGTGC
TGTGAG
GTGACGGGCGGTGTGTACGCGCTTCAGGGCCCTGTACAA


x64_59
GGTCGCA
TCTCTG
TCCTGGTAAGAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 119



1
NO: 118






NGSPle
TAGGTGC
TGTCAC
TCTTCATCGACGCACGAGCCGAGTGATCCACCGCTGTTTC


x64_60
GGTCGCA
AGTCTG
CCTTCCAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 121



1
NO: 120






NGSPle
TAGGTGC
TGTGAC
GATCAATGTGTCCTGCAATTCACATTAATTCTCGCAGCTA


x64_61
GGTCGCA
AGACTG
GCGTTCACAAAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 123



1
NO: 122






NGSPle
TAGGTGC
TGTGTG
GCTCAGACAGGCGTAGCCCCGGGAGGAACCCGGGGTCA


x64_62
GGTCGCA
TCTCTG
CGAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 125



1
NO: 124






NGSPle
TAGGTGC
TGTCTC
GCCTACAGCACCCGGTATTCCCAGGCGGTCTCCCAAGGA


x64_63
GGTCGCA
TCACTG
GCATATATAACAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 127



1
NO: 126






NGSPle
TAGGTGC
TGTGAG
GAGATCGGGCGCGTTCAGGGTGGTATGGCCGTAGAGCG


x64_64
GGTCGCA
ACACTG
TTATCCAGTCTCGTACGGTTAAGAGCC



SEQ ID NO:
SEQ ID
SEQ ID NO: 129



1
NO: 128












Name
Region 1
Region 2





Capture
CAGWSWSWS
ACATGCGACCGCACCTA TTTTTTTTTT\Biotin


Probe64

(SEQ ID NO: 130)


plex
















TABLE 2





List of 256 precursor for the 256plex of in FIG. 8


















Name
Region 3
Region 4
Region 5





NGSPLEx
TCGCGAAAT
CTCAG
TCGCCGCGTAAACGACGCGGCGCGCGTGCTGCCGCACT


256_1
TCGGTTGT
ACAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 132





NGSPLEx
TCGCGAAAT
GACAG
AGCCCGCCGCGCACGCGCCCCTGCGCCCGCGCCGCCC


256_2
TCGGTTGT
ACAG
CAGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 133





NGSPLEx
TCGCGAAAT
CTGTC
CTGCTCCCGGCTGGGCCCACCGCCAAAGCAGCGGCCCC


256_3
TCGGTTGT
TCAG
ACAGGAGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 134





NGSPLEx
TCGCGAAAT
GTCAC
CTCCTCCGGCCCCGCGCGCCCACTCCGCGCCCGGCCTG


256_4
TCGGTTGT
ACAG
GCCGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 135





NGSPLEx
TCGCGAAAT
CAGAC
GCCGCCGCCGCCGCCGCCGCCGCCGCCCCGCTGCCTT


256_5
TCGGTTGT
TCAG
CTCAGCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 136





NGSPLEx
TCGCGAAAT
CAGTG
GCGGGTGGGCGGCCCGCGTTCCTTAGCCGCGGCTCCG


256_6
TCGGTTGT
TGAG
CGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 137





NGSPLEx
TCGCGAAAT
GAGTC
CCATTCCTGCCAGACCCCCGGCTATCCCGGTGGCCAGG


256_7
TCGGTTGT
TCAG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 138





NGSPLEx
TCGCGAAAT
GACTC
GGCCTCGCGTGCCTGGACAGCCCCGCGGGCCAGCAAG


256_8
TCGGTTGT
TCAG
CCTATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 139





NGSPLEx
TCGCGAAAT
CTCTC
CCATCTCAGGGTGAGGGGCTTCGGCAGCCCCTCATGCT


256_9
TCGGTTGT
TCAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 140





NGSPLEx
TCGCGAAAT
CACAC
GCGACCAAAGGCCGGCGCACGGCCTGGCCGCTCAGCG


256_10
TCGGTTGT
AGTG
ACTCCCGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 141





NGSPLEx
TCGCGAAAT
GTGTG
CGCGGCCTCAAAAGGCCTCCTAGGCCGCGGCGGGCAAA


256_11
TCGGTTGT
TCAG
GCACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 142





NGSPLEx
TCGCGAAAT
GTGTC
TACGCTCTCGCGCACCAGGTACGCCTGGTGTTTCTTTGT


256_12
TCGGTTGT
AGAG
GGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 143





NGSPLEx
TCGCGAAAT
GAGAG
CTCTGCCCAATCCCGGCTCCGGGCGACCCGGGCCCCTG


256_13
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 144





NGSPLEx
TCGCGAAAT
CACTC
TCTTGTAGGAGGCCCATTCCTCCCACCACGGGGCCACC


256_14
TCGGTTGT
TGAG
CACCCCGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 145





NGSPLEx
TCGCGAAAT
CTGAC
CAGCCCCCAAACCCGACTGGTCGAAGGGGGACATCAAG


256_15
TCGGTTGT
TGTG
TCCCCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 146





NGSPLEx
TCGCGAAAT
GTCTC
CGCAGCCGACGCCGGCGCGAGAGCAGGGGCGGGGCCG


256_16
TCGGTTGT
ACTG
GCGCGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 147





NGSPLEx
TCGCGAAAT
CAGTC
GGCCCGCTCGGCAGGCCCCAACTGGCCCTCCCCCTTGG


256_17
TCGGTTGT
AGAG
CGGCGATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 148





NGSPLEx
TCGCGAAAT
GAGTG
CGGGCCGAATGCCAGCCCGCCGAGCTCAGGGCAGCGG


256_18
TCGGTTGT
TCAG
GGAGCTGGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 149





NGSPLEx
TCGCGAAAT
CACAG
ACCTCCGCTGCGTCTCTCCGCGCCGCCGCCGCTGCTCG


256_19
TCGGTTGT
TGAG
CCGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 150





NGSPLEx
TCGCGAAAT
CTCAC
CGGCCCAGGTCTCGGTCAGGGCCAGGGCCGCCGAGAG


256_20
TCGGTTGT
AGAG
CAGCAGGATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 151





NGSPLEx
TCGCGAAAT
GTGAG
CTGCCTCACGCATCACAGCACCCCCACCCGAGCGCGGG


256_21
TCGGTTGT
AGTG
CGGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 152





NGSPLEx
TCGCGAAAT
CAGAC
GGCCACGCTGCCACCAGCAGCAGGCCCATGGGGTGGCA


256_22
TCGGTTGT
ACTG
GGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 153





NGSPLEx
TCGCGAAAT
CTGTG
CCAGGGGTAGCCCCCTGGATTATGGTCTGACTCAGGACT


256_23
TCGGTTGT
TCAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 154





NGSPLEx
TCGCGAAAT
GTGTC
CGAAGTTGCCCAGGGTGGCAGTGCAGCCCCGGGCTGAG


256_24
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 155





NGSPLEx
TCGCGAAAT
GACAC
GTTACCTCCCCGCACACGGACTGTGTGGATGCGGCGGG


256_25
TCGGTTGT
TCTG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 156





NGSPLEx
TCGCGAAAT
CAGAG
AGAGCTCATGTATGGGTTAATCCGACCATGAGCTCTGTG


256_26
TCGGTTGT
AGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 157





NGSPLEx
TCGCGAAAT
CTGAG
GGCCGGGCCACGGCCAGCATCCGGACCCGGGGCAGCG


256_27
TCGGTTGT
ACAG
GCGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 158





NGSPLEx
TCGCGAAAT
GACTC
GCCATTACGGCTTCCCCGGCCAATAGACGCCCGGCTGC


256_28
TCGGTTGT
ACAG
CCTTACATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 159





NGSPLEx
TCGCGAAAT
CTCTG
TTCAGCATTTCTGCTGAAATCTAGGGTGGAAATGCGTTCC


256_29
TCGGTTGT
ACAG
TAGTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 160





NGSPLEx
TCGCGAAAT
CTCAC
CTCAGCGGAAATCCGGCGATCTGGCCGGAAGTGCGGCA


256_30
TCGGTTGT
TCAG
CACTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 161





NGSPLEx
TCGCGAAAT
GAGAC
TGGCAGGAAGCTGCAGCCTTTCTCAAGAGCAGCCAGGAT


256_31
TCGGTTGT
TCAG
CTCCTGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 162





NGSPLEx
TCGCGAAAT
GAGTC
GGTAGCGAGGAGAGCGGCTGAGGCTCAGTGCGCCTGC


256_32
TCGGTTGT
TCTG
GCGGCGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 163





NGSPLEx
TCGCGAAAT
GAGAG
GCCATGGCAGCTTTCATGGCGTCTGGGGTTTTACCCCAC


256_33
TCGGTTGT
TCAG
TCATCTTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 164





NGSPLEx
TCGCGAAAT
CACTC
TGCATCTTCAGGAGACGCTCGTAGCCCTCGCGCTTCTCC


256_34
TCGGTTGT
ACAG
TTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 165





NGSPLEx
TCGCGAAAT
CAGAG
CCGTTGGCCACTTGTGGCCATTCCTACTCCCATGCCGGC


256_35
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 166





NGSPLEx
TCGCGAAAT
CTCAG
AACTGGGTCCTACGGCTTGGACTTTCCAACCCTGACAGA


256_36
TCGGTTGT
TGTG
CCCGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 167





NGSPLEx
TCGCGAAAT
GAGAC
GCCGCTGCTGCAGCAGCTGCCTTATCCACCCGGAGCTT


256_37
TCGGTTGT
TGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 168





NGSPLEx
TCGCGAAAT
GTCTC
ACGCGGCCTCTCCCGGCCCCTTCCGTTTAGTAGGAGCC


256_38
TCGGTTGT
TGAG
GCACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 169





NGSPLEx
TCGCGAAAT
CTCTG
TGAGGGGCTTGGGCAGACCCTCATGCTGCACATGGCAG


256_39
TCGGTTGT
AGAG
GTGTATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 170





NGSPLEx
TCGCGAAAT
GTGTG
CCCGGCCCAACAAACTACCTACGTCCGGGAGTCGCCAA


256_40
TCGGTTGT
TGAG
CCGACGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 171





NGSPLEx
TCGCGAAAT
GAGAC
AGGCAGACTGCTGCAGGACGGGACTGGGCCGGGAACC


256_41
TCGGTTGT
AGAG
GGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 172





NGSPLEx
TCGCGAAAT
CACTG
TCTAAACCGTTTATTTCTCCCCACCAGAAGGTTGGGGTG


256_42
TCGGTTGT
TGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 173





NGSPLEx
TCGCGAAAT
GAGTG
AACACTGCCTTCTTGGCCTTTAAAGCCTTCGCTTTGGCTT


256_43
TCGGTTGT
TGTG
CATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 174





NGSPLEx
TCGCGAAAT
GTCAC
CGGTAGCCGAAGGAGTTCAAAAGACCTCTAGTGCGCCCA


256_44
TCGGTTGT
TCTG
CCGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 175





NGSPLEx
TCGCGAAAT
CTCTC
GGTGACAGGGTGGCCCAGGAGCGGCCACTGAGATGAGA


256_45
TCGGTTGT
TCTG
CCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 176





NGSPLEx
TCGCGAAAT
GAGTG
GATCACTCCCCAGGCGCTGAGGACGATGCCGCAGGCGG


256_46
TCGGTTGT
TCTG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 177





NGSPLEx
TCGCGAAAT
GAGAG
CTTAAGACCAGTCAGTGGTTGCTCCTACCCATTCAGTGG


256_47
TCGGTTGT
TGAG
CCTGAGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 178





NGSPLEx
TCGCGAAAT
GTCTG
GAAGCTCCTAGAAGCTTCACAAGTTGGGGCACAACTCCT


256_48
TCGGTTGT
TCTG
GTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 179





NGSPLEx
TCGCGAAAT
CACTC
TGGCGCGCGGCACTGGGAGCCGCCGGGCCGAGCCTGT


256_49
TCGGTTGT
AGTG
CAATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 180





NGSPLEx
TCGCGAAAT
GAGTC
TCATAGAAAGAGAGGGAAGTTTTGGCGATCACAACAGCG


256_50
TCGGTTGT
ACAG
CCAAATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 181





NGSPLEx
TCGCGAAAT
CACTC
CAAAGAATGCAAACATCATGTTTGAGCCCTGGGGATCAG


256_51
TCGGTTGT
AGAG
GGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 182





NGSPLEx
TCGCGAAAT
GTCTG
GATAGCGCTCCTGTCTATTGGCTGCGCCATCGCCCGTCA


256_52
TCGGTTGT
AGTG
GACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 183





NGSPLEx
TCGCGAAAT
CTCAG
CATATGCAGGTCCCCTGTTGGCCATTCCAATGGGTGGCG


256_53
TCGGTTGT
TGAG
GTGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 184





NGSPLEx
TCGCGAAAT
CTCAG
ACTCCCTGCTCCTTGGGAATACGGACCACGCAGTCTATA


256_54
TCGGTTGT
TCTG
ATGCCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 185





NGSPLEx
TCGCGAAAT
CACAC
CGGGGTAACCGTGGAGGGCGACGCGCAGAGGCTGCGG


256_55
TCGGTTGT
TGTG
CTATTTATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 186





NGSPLEx
TCGCGAAAT
CAGTC
GGACTGGTCCCATGAGGCAGAAGGAGCACCAGCGCCTG


256_56
TCGGTTGT
TGTG
CTGGGTGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 187





NGSPLEx
TCGCGAAAT
GTCTC
CGAGAAACAGCGCCCGACACCTGGCCCTTCGCAGCTCT


256_57
TCGGTTGT
TGTG
CGCCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 188





NGSPLEx
TCGCGAAAT
CAGAG
CTGCATGGCCTTCATGACATGAAGGTTGGGCACATTCTT


256_58
TCGGTTGT
TGTG
GTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 189





NGSPLEx
TCGCGAAAT
CTGAC
CCGAAACCCATGGTGTCGGCTGTATCCGAGAGCTGGGG


256_59
TCGGTTGT
TGAG
AGCAGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 190





NGSPLEx
TCGCGAAAT
GACAC
TTCATGCAGATCACCTGCACCCCGCTTGTGTTCAGTGGG


256_60
TCGGTTGT
TCAG
GTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 191





NGSPLEx
TCGCGAAAT
GAGAC
AGCTGCCGGGGTCCGGTTCCTCAGCTCCAGGTGGATCC


256_61
TCGGTTGT
ACAG
TTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 192





NGSPLEx
TCGCGAAAT
CTCTG
CTCGGAAGTAGCCCCCGTAGGTGCCCTGCTTGTGGTCAA


256_62
TCGGTTGT
TGAG
ACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 193





NGSPLEx
TCGCGAAAT
CACAC
CGGGGGTAGCGGTCAATTCCAGCCACCAGAGCATGGCT


256_63
TCGGTTGT
AGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 194





NGSPLEx
TCGCGAAAT
GTCAC
GAAACATGATCGCTTATAAGCCAGCGGTCCCAATTCGGT


256_64
TCGGTTGT
ACTG
CCACCGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 195





NGSPLEx
TCGCGAAAT
GTGTG
CCCACACGTCCATGACTGGTCGTCCTAGATTTTAGGTGT


256_65
TCGGTTGT
ACAG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 196





NGSPLEx
TCGCGAAAT
CACAC
CTTTAGCTCGAGATTGTCCCTCTCTGTCCAGCAGATAGG


256_66
TCGGTTGT
ACAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 197





NGSPLEx
TCGCGAAAT
CTCTC
GCCGTCCTGCGCAAGCGCTTTTCAACCCCACTCCTTTCT


256_67
TCGGTTGT
AGAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 198





NGSPLEx
TCGCGAAAT
GACTG
CAGTCTCTGGGAGAATGGGCAGTTCCCAATCTTGGCCCC


256_68
TCGGTTGT
TGTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 199





NGSPLEx
TCGCGAAAT
GTCTG
GGTTGGTGCTTGCCACACTTCTTACAGAAAGTCCGGCGG


256_69
TCGGTTGT
TGTG
GTTTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 200





NGSPLEx
TCGCGAAAT
GTGTC
CATGTAGTTGAGGTCAATGAAGGGGTCATTGATGGCAAC


256_70
TCGGTTGT
ACAG
AATATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 201





NGSPLEx
TCGCGAAAT
CTCAC
CGGAACTGGAGGTTTCCTTTTCCGCCATAGTTTGTCCTG


256_71
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 202





NGSPLEx
TCGCGAAAT
GTGTC
TTGTAGTCTGAGAGAGTGCGGCCATCCTCCAGCTGTTTG


256_72
TCGGTTGT
TCAG
CCGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 203





NGSPLEx
TCGCGAAAT
GTCAG
CTGCAGTGGCTTTAAACCCACAGTAGTAACCTGCAGGAT


256_73
TCGGTTGT
TGTG
CACACTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 204





NGSPLEx
TCGCGAAAT
CACTG
CGAAGGACAGGTGGTCTCTTCGTTGGGACGTCCCCTTTG


256_74
TCGGTTGT
TCTG
CCAGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 205





NGSPLEx
TCGCGAAAT
CAGTG
AGCTTGGCTCCCTTCTTGCGGCCCAGGGGCAGCGCATG


256_75
TCGGTTGT
AGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 206





NGSPLEx
TCGCGAAAT
GTCTG
TTCCGACATGTCCGCATTTTTGATCACGGCCTTTCGGTG


256_76
TCGGTTGT
TGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 207





NGSPLEx
TCGCGAAAT
CAGAG
CTTGGGAAGACCAAGTCCTCAAGGATGGCATCGTGCACA


256_77
TCGGTTGT
TCAG
GCTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 208





NGSPLEx
TCGCGAAAT
CTCTG
CGGCCGCCTCCAGGAACGCCGACCACTCCACTTTAGGT


256_78
TCGGTTGT
TCAG
ATCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 209





NGSPLEx
TCGCGAAAT
GTCTC
AGGCGAAGTTCCGTCTACGGCTATTTAATGGAGCGCCTG


256_79
TCGGTTGT
TCTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 210





NGSPLEx
TCGCGAAAT
CTCTC
TGTATGTTCCATCCATGTGAGCAGCAAATGTGTATTTCCC


256_80
TCGGTTGT
TGAG
ACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 211





NGSPLEx
TCGCGAAAT
CAGTC
GGTCTCATCCGAACCCTGCGGATATATTTTTCACCCAAGA


256_81
TCGGTTGT
TGAG
AATTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 212





NGSPLEx
TCGCGAAAT
GACAC
GGCCTTCACGCGGCCCAGGAGTTTCTTATTGTTGCGGCA


256_82
TCGGTTGT
AGAG
GTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 213





NGSPLEx
TCGCGAAAT
GTGAG
CCTTTTCCAAGGATTTTACGTTGCGGCTTGTTAGGGTGAT


256_83
TCGGTTGT
ACAG
TTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 214





NGSPLEx
TCGCGAAAT
GTGTG
ACTGTTCTCTCTTGGCAAAGTAATCAGGATACATTGCCTG


256_84
TCGGTTGT
AGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 215





NGSPLEx
TCGCGAAAT
GTCAC
ACAGTAGCATGCAGTCCCACAACTTGTACCAGCATCCCC


256_85
TCGGTTGT
TGTG
AGCGTCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 216





NGSPLEx
TCGCGAAAT
GTCAG
ACTTGGCTCCAGCATGTTGTCACCATTCCAACCAGAAATT


256_86
TCGGTTGT
TCAG
GGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 217





NGSPLEx
TCGCGAAAT
GACTC
ACAATGCAAAGATGGCTTTTCAGAGCAGCCAGTGGGGGT


256_87
TCGGTTGT
AGAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 218





NGSPLEx
TCGCGAAAT
CTGAG
CGACGTAGCCCGGCCTCTTCGACCTGCACCTCCGCGGC


256_88
TCGGTTGT
ACTG
TCCCTCTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 219





NGSPLEx
TCGCGAAAT
CTCTC
AGTGGAAACAGGATTACTATGATACAAAACTTCCACTACT


256_89
TCGGTTGT
ACTG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 220





NGSPLEx
TCGCGAAAT
GTGAC
GCAAAGGCAATCTTCAAATAGAAGCTGGCAACACAAGAC


256_90
TCGGTTGT
ACAG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 221





NGSPLEx
TCGCGAAAT
GTGTG
AATCACGCACTGTCCCCAACAGCCCCAGTTAACACAGGG


256_91
TCGGTTGT
TGTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 222





NGSPLEx
TCGCGAAAT
CTCAG
CAGGGTTTCTGGTCCAAATAGGCTTGGTCTTGTTTATGGT


256_92
TCGGTTGT
ACTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 223





NGSPLEx
TCGCGAAAT
GTGTC
CCCGAATCCGCCGGCCCTTCTCACCAAGAACATTCTGTT


256_93
TCGGTTGT
TCTG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 224





NGSPLEx
TCGCGAAAT
GTCTC
GGAGATCCATCATCTCTCCCTTCAATTTGTCTTCGATGAC


256_94
TCGGTTGT
TCAG
ATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 225





NGSPLEx
TCGCGAAAT
GACTC
TGGCATTAGCAGTAGGTTCTTGTATTTGAGTCTGCTTGGT


256_95
TCGGTTGT
ACTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 226





NGSPLEx
TCGCGAAAT
CTCAC
GAAAACTGGTCAGATGAATATTATTGCTTCCCATTTTCAA


256_96
TCGGTTGT
AGTG
CCAGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 227





NGSPLEx
TCGCGAAAT
GACTC
TCCAGAGGGTCCGGATCGCTCTCTTCTGCACTGAGGTTG


256_97
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 228





NGSPLEx
TCGCGAAAT
CTCTG
CCATCCTGGCAGGCGGCTGTGGTGGTTTGAAGAGTTTG


256_98
TCGGTTGT
ACTG
GACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 229





NGSPLEx
TCGCGAAAT
GTCAG
GCTGGCAAGGCTGAGCAATTCATGTTTATCTGCAACAGC


256_99
TCGGTTGT
TGAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 230





NGSPLEx
TCGCGAAAT
GAGAG
AGCATCAGCTACTGCCAGCGGTTCATGGGCTTCTTTTAC


256_100
TCGGTTGT
ACTG
TATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 231





NGSPLEx
TCGCGAAAT
CAGTC
TGAGTGAGCCCTCCTGCCACGTCTCCACGGTCACCACCT


256_101
TCGGTTGT
TCTG
CCTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 232





NGSPLEx
TCGCGAAAT
GTGAC
CTTTGGGTCCCAAGGTGCTCTTTACCAAGTCTCCAATGG


256_102
TCGGTTGT
AGAG
CGATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 233





NGSPLEx
TCGCGAAAT
CAGTG
AACCCAATTAGTTCCCAGAAGTCACAACTCAGCTCATGG


256_103
TCGGTTGT
ACTG
CCACCTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 234





NGSPLEx
TCGCGAAAT
CACAC
CTCCTTGGTTCCATCTCCCGTGGCATCGCTTCCCTCTCG


256_104
TCGGTTGT
TGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 235





NGSPLEx
TCGCGAAAT
GAGTG
TATTTCACCAGGCCGGCAAAGAATGGACGGTCCTTCAGG


256_105
TCGGTTGT
AGAG
TCAACGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 236





NGSPLEx
TCGCGAAAT
CTGTG
CCCTCAGAGGACAGGGCGCGGTTGCTGGGTCATGAGCA


256_106
TCGGTTGT
TCTG
CCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 237





NGSPLEx
TCGCGAAAT
CTGTC
CAGGCACCAGACCAAAGACCTCCTGCCCCACAGCAAATG


256_107
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 238





NGSPLEx
TCGCGAAAT
CAGTG
AGTTTCCTCTTCACTCAGCAGCATGTTGGGGATCCCGCG


256_108
TCGGTTGT
AGTG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 239





NGSPLEx
TCGCGAAAT
GTCAC
TCTGTGAGAAAACCTTGGAGAATCAATAATGGTGGATTCA


256_109
TCGGTTGT
TGAG
TTGATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 240





NGSPLEx
TCGCGAAAT
GAGAC
GCTGTATCTGGTCCTGGCGGCCGGCTGTGATGTTTGACA


256_110
TCGGTTGT
ACTG
TTGTCCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 241





NGSPLEx
TCGCGAAAT
CACTC
GATGGCGGCGGGGGGCAGGGGGCGCACGTAGCCTGGC


256_111
TCGGTTGT
TCTG
CATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 242





NGSPLEx
TCGCGAAAT
GACTG
CTCTCTCTTCAGCAATGGTGAGGCGGATACCCTTTCCTC


256_112
TCGGTTGT
TGAG
GGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 243





NGSPLEx
TCGCGAAAT
GTGTG
TCTGGGACAAGACAGTCGAGGGAGCTTCTTCCTCAGGGA


256_113
TCGGTTGT
ACTG
ACTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 244





NGSPLEx
TCGCGAAAT
CAGAG
GCTGCCAAAGCTGGGTCCATGACAACTTCTGGTGGGGC


256_114
TCGGTTGT
AGTG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 245





NGSPLEx
TCGCGAAAT
GTCAG
AGACTGCCAGCGAAGCCCCTCTTATGAGCAAAAGAGCAA


256_115
TCGGTTGT
TCTG
CCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 246





NGSPLEx
TCGCGAAAT
CACTC
CTTCAGGTGTCCTTGAAGCAATAATTTCTGTCAGTACTTT


256_116
TCGGTTGT
TCAG
TTCATTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 247





NGSPLEx
TCGCGAAAT
CTGTC
AACGATCAAAATTAGACATGTCTTCATCTGAATCATCTTC


256_117
TCGGTTGT
ACAG
CCAGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 248





NGSPLEx
TCGCGAAAT
GTGAG
CGGCCACACCATCTTTGTCAGCAGTCACATTGCCCAAGT


256_118
TCGGTTGT
TGTG
CTCCAACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 249





NGSPLEx
TCGCGAAAT
GAGTC
TGACCTCTCACTTTTCCAGCACGGGCCAGGGAACCATGG


256_119
TCGGTTGT
AGTG
ACTTTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 250





NGSPLEx
TCGCGAAAT
GTGAC
GTCAGCATAATCTTTATTTCAAAATAACATTTTTATTATGG


256_120
TCGGTTGT
TGAG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 252





NGSPLEx
TCGCGAAAT
CTCAC
AGCCACAGGATGTTCTCGTCACACTTTTCCATGTAGGCG


256_121
TCGGTTGT
ACAG
TTATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 253





NGSPLEx
TCGCGAAAT
GTCTG
TATCCGTTCCTTACATTGAACCATTTTACTGTTCCCAAAAC


256_122
TCGGTTGT
ACAG
CTTCGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 254





NGSPLEx
TCGCGAAAT
CTGTC
GACTTTTACAATCGATTCCCCAAACCCCTTTATGGCAGCA


256_123
TCGGTTGT
AGTG
ACACTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 255





NGSPLEx
TCGCGAAAT
GACAC
TTCTTGTAATTTGCATAATCCTCAAGAATGGAATCCACTG


256_124
TCGGTTGT
TGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 256





NGSPLEx
TCGCGAAAT
GAGAG
TGGTCCCAGGGGAAAGGAAGAGGCCAGTTGGTCCAGTT


256_125
TCGGTTGT
AGAG
TTGATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 257





NGSPLEx
TCGCGAAAT
GACTG
CAGGGGACGGTACTCCACATCCTCTCTGAGCAGGCGGT


256_126
TCGGTTGT
ACTG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 258





NGSPLEx
TCGCGAAAT
CTCTG
CTTCTACATCATCAGCTGCCATACGAAGAAGGGACTCCG


256_127
TCGGTTGT
AGTG
TTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 259





NGSPLEx
TCGCGAAAT
GACTG
GCCACCAGCATCAACCTTCTTGGCTTCGGGTTTCTTCTG


256_128
TCGGTTGT
ACAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 260





NGSPLEx
TCGCGAAAT
GTCTG
CCCCACCGGTGCTCTTGGTACGAAGATCCATGCTAAATT


256_129
TCGGTTGT
AGAG
CCCCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 261





NGSPLEx
TCGCGAAAT
CAGAG
TTGTATATAAGATTACTTTATTCCTGCATCTTCTCAATGGT


256_130
TCGGTTGT
TGAG
TTCTTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 262





NGSPLEx
TCGCGAAAT
GACAG
CATTTTCATGGTTTTGTAGAGCTTCAATTTTGTCTAAGCCT


256_131
TCGGTTGT
ACTG
CCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 263





NGSPLEx
TCGCGAAAT
GTGAC
CATAGTTGTCAACAAGCACAGTGAAAGCGCCATTCTCTTT


256_132
TCGGTTGT
TGTG
ACATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 264





NGSPLEx
TCGCGAAAT
GTCTC
GCCAACAGCATGCTGGGTAACATTGTAGACTCTTCCTGG


256_133
TCGGTTGT
AGTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 265





NGSPLEx
TCGCGAAAT
CTGAC
AGGAGATCTCCACAGGGGCTGGACGGTTCATTATGGCAA


256_134
TCGGTTGT
AGAG
ATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 266





NGSPLEx
TCGCGAAAT
CTGAG
TTGAGCATCTCGTAGTTGGGAGGCTGGCCGCTGTTGACA


256_135
TCGGTTGT
TCAG
GGAGAGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 267





NGSPLEx
TCGCGAAAT
CAGAC
CTCCCTTTCCCCAGTAGTTTCGGTTTCTCAACAGTTTCCT


256_136
TCGGTTGT
TGTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 268





NGSPLEx
TCGCGAAAT
GTGAG
TGGTTTTTAACAGGTTTAACCAATCATCTACTATCTGATTG


256_137
TCGGTTGT
ACTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 269





NGSPLEx
TCGCGAAAT
CTGAC
CCTTCTGTCCTCATGTTGGCAGAGATATCTACTCTGTGGT


256_138
TCGGTTGT
AGTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 270





NGSPLEx
TCGCGAAAT
GACAG
GGATTCCAGTAGCCAGGTTGGTACGGGACGGCATCATAA


256_139
TCGGTTGT
AGAG
CATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 271





NGSPLEx
TCGCGAAAT
CTGAG
CTTCAGCGGAGGCATTTCCACCAATGAGCGAGTCATTGG


256_140
TCGGTTGT
AGTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 272





NGSPLEx
TCGCGAAAT
GTCAG
GTTTATGGTAAAGCTTAGCCTTCAGACCAATCATTTTCTTT


256_141
TCGGTTGT
ACAG
GCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 273





NGSPLEx
TCGCGAAAT
CTCAC
GGCCGCAAAAGGGAAGAGAACTACACGCTGCTTCCGGT


256_142
TCGGTTGT
TCTG
TCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 274





NGSPLEx
TCGCGAAAT
GAGTG
TTGTTCACTGGGTCTTTGTCTTTCTTGGCCGACTTTCCAG


256_143
TCGGTTGT
TGAG
CGTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 275





NGSPLEx
TCGCGAAAT
GAGAC
CTTCCCAGTTAAGGCTCTTTATTTTATTTTGAACACTTTTT


256_144
TCGGTTGT
AGTG
TGCATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 276





NGSPLEx
TCGCGAAAT
CAGAC
ATCAACAAGCCACGGTTTTAGCTCTTCAGGAATCTTTACT


256_145
TCGGTTGT
ACAG
TTAACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 277





NGSPLEx
TCGCGAAAT
CACAC
GGTGGTTCCTTGAGGGCTTTGATGATCAGGGCAGAGGC


256_146
TCGGTTGT
TCTG
AGAAGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 278





NGSPLEx
TCGCGAAAT
GTGTC
AATTCACACACCTCACAGTAAACATCAGACTTTGCTGGGA


256_147
TCGGTTGT
AGTG
CCTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 279





NGSPLEx
TCGCGAAAT
GTCTG
TGTCATCCTTCTTGCCACCTCCAGGACCATGACCACCAC


256_148
TCGGTTGT
ACTG
TCTGACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 280





NGSPLEx
TCGCGAAAT
GTGAG
GAGCAAGGAGGGCTGGAAGCTGTTAGTCAGAGTGTTGA


256_149
TCGGTTGT
TCTG
AGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 281





NGSPLEx
TCGCGAAAT
CACAC
AAAATTGTGCGGATGTGGCTTCTGGAAGACCTTCATTCTA


256_150
TCGGTTGT
TCAG
AAGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 282





NGSPLEx
TCGCGAAAT
CACTG
GCAGTTTTCTAATTGAGAATGTAATCTTGGTCTTTAAAGA


256_151
TCGGTTGT
TGTG
ACATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 283





NGSPLEx
TCGCGAAAT
CACAC
GTTTCTGCATCAGCCCGCTCATCAAATCCAGGGAAGTTG


256_152
TCGGTTGT
ACTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 284





NGSPLEx
TCGCGAAAT
CTGAG
CCAGCGGCAACCTCAGCCAAGTAACGGTAGTAATCTCCT


256_153
TCGGTTGT
TCTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 285





NGSPLEx
TCGCGAAAT
GACAC
GTGATCGGGGTTTCTTGATACCATTTCTGTGCCATTTTCG


256_154
TCGGTTGT
TGTG
GGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 286





NGSPLEx
TCGCGAAAT
GTCAC
AGGAGGTCCTGCTGAGTTGGTGAATCTCTGGTAACGGTG


256_155
TCGGTTGT
AGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 287





NGSPLEx
TCGCGAAAT
CTGAG
CCTGGTTTTCTAAAATTCTTCAGGTCAATAGTCAAGCCTT


256_156
TCGGTTGT
TGAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 288





NGSPLEx
TCGCGAAAT
CTGAC
ACAATATCACCTTTCTTATAGATTCGCATATATGTGGCCA


256_157
TCGGTTGT
ACAG
AAGGATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 289





NGSPLEx
TCGCGAAAT
CTCTG
AAACAAAACAAGAAAAAGTAATCTGCTAAAAACTATAGGG


256_158
TCGGTTGT
TGTG
TCCCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 290





NGSPLEx
TCGCGAAAT
CAGTG
TAGAATCTTTTTTATTCAGAAAAAAAAAACCCCAAAAAACA


256_159
TCGGTTGT
ACAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 291





NGSPLEx
TCGCGAAAT
CTGTG
AGTTTAATAAATACAAATACTCGTTTCTTTTTGATTAGTGT


256_160
TCGGTTGT
AGAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 292





NGSPLEx
TCGCGAAAT
GTGAC
ACTTTGAGATTCTTTTCTTTTGCGCCTCTTATCAAGTCAG


256_161
TCGGTTGT
TCAG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 293





NGSPLEx
TCGCGAAAT
CACAG
AGCCTGGTTGGAGGATTCCTAGTTTTATACATGAGAAATA


256_162
TCGGTTGT
AGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 294





NGSPLEx
TCGCGAAAT
GAGTC
GTTCCCAAGATAGAAGAGTAGGTATGAAGCAATTCTGAC


256_163
TCGGTTGT
AGAG
TCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 295





NGSPLEx
TCGCGAAAT
GACTC
TCTTTGTATGAGTCTTCATTCAGTGTATCAAGTTCATGGT


256_164
TCGGTTGT
AGTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 296





NGSPLEx
TCGCGAAAT
CTGTG
ACAGATGAATGTAGGATTGATGCAAGTCACTTCCAGGAA


256_165
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 297





NGSPLEx
TCGCGAAAT
GTGAG
TCGCTTTTAGCTCCTCGAGTTTCTTCTGCTCCTCTTTTTGT


256_166
TCGGTTGT
TGAG
TTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 298





NGSPLEx
TCGCGAAAT
CTCAG
TACTTCTGGGCCGTCACAGGGGAGGGCAGGTGGATGGT


256_167
TCGGTTGT
AGTG
GATCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 299





NGSPLEx
TCGCGAAAT
CACTC
TGGTGCCGGATGAACTTCTTGGTTCTCTTTTTGACGATCT


256_168
TCGGTTGT
ACTG
TGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 300





NGSPLEx
TCGCGAAAT
GAGTC
TATGCCTAGAACTTTCACGCCAATTATTTCACCTCTTGCA


256_169
TCGGTTGT
TGAG
CATATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 301





NGSPLEx
TCGCGAAAT
CACAG
CCCAGGTCCTGTGATGTTTATTGAAGGAAGCAAGGGCAG


256_170
TCGGTTGT
TCTG
GGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 302





NGSPLEx
TCGCGAAAT
CAGAC
GTCCCTTTGTTTTCTTCTTCTTTTTCCCCACTCTAGTTGGT


256_171
TCGGTTGT
AGTG
ACAGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 303





NGSPLEx
TCGCGAAAT
CAGAC
CCATCGATGTTGGTGTTGAGTACTCGCAAAATATGCTGG


256_172
TCGGTTGT
TCTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 304





NGSPLEx
TCGCGAAAT
GTGTG
GATACCACAGAATCAGCAGGGTGAGAAACAATTGCACAA


256_173
TCGGTTGT
TCTG
AAGACTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 305





NGSPLEx
TCGCGAAAT
GACTC
AAAGCTTGAGATCACTTGAGGCCAGAGTTTTCAGACCTG


256_174
TCGGTTGT
TCTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 306





NGSPLEx
TCGCGAAAT
GACAG
CGGGTGTGGACGGGCGGCGGATCGGCAAAGGCGAGGC


256_175
TCGGTTGT
TCTG
TCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 307





NGSPLEx
TCGCGAAAT
CACAG
CAGCGCGAGTGCAGAGCATGGTGGTAGATGTGGCAGAG


256_176
TCGGTTGT
ACAG
GATGGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 308





NGSPLEx
TCGCGAAAT
CTGAG
GACCCTCATAGACAGCAGACAGAAGAGGAGTAATATGAT


256_177
TCGGTTGT
TGTG
GTTTATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 309





NGSPLEx
TCGCGAAAT
GTGTG
AAATACACTTTTAATTGATTTCAGATAAAAACTACTTGGTC


256_178
TCGGTTGT
AGTG
GGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 310





NGSPLEx
TCGCGAAAT
GTGAG
GCCGCGCGAAGCCGGAGAGGAGAAGAAGAGAAGGAGG


256_179
TCGGTTGT
TCAG
GTTAGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 311





NGSPLEx
TCGCGAAAT
CAGTC
CAAATCTCAGGGAAGCAGTGATGGAGGACACAATCTGGC


256_180
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 312





NGSPLEx
TCGCGAAAT
CACTC
GGTCATAGTGGAGGGTAAGAGCTTTTACATCCCGCAGTG


256_181
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 313





NGSPLEx
TCGCGAAAT
CACAG
GATCCATCATTTCTCCTTTAAGCTTATCTTCCAAAATGGTC


256_182
TCGGTTGT
TGTG
GGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 314





NGSPLEx
TCGCGAAAT
GTCTG
TGTTTACTGATTTCTGTCTGGTTAAACATCCAATACTGGT


256_183
TCGGTTGT
TCAG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 315





NGSPLEx
TCGCGAAAT
GACAG
GCCTATCTCTTTCCATCAGACTCCAGTGATACCCAATGGT


256_184
TCGGTTGT
TCAG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 316





NGSPLEx
TCGCGAAAT
GACAG
CCTGTAATCTCAGCACGTTGGGAGGCGAGGTGGGTGGA


256_185
TCGGTTGT
AGTG
TGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 317





NGSPLEx
TCGCGAAAT
CTCTC
CTTAAATACCAGATACATTTTTAGTCCTCTACATAATGGTC


256_186
TCGGTTGT
ACAG
GGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 318





NGSPLEx
TCGCGAAAT
GACAC
GTTTTTTGGAAGATTCGGGTTCAGCACAGGATTCCATTTG


256_187
TCGGTTGT
AGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 319





NGSPLEx
TCGCGAAAT
GTCTC
TGATATCCTTGTTTTTAACTGTTGTGGCTTGCTGAATCAA


256_188
TCGGTTGT
AGAG
ATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 320





NGSPLEx
TCGCGAAAT
CAGAG
AAGACGGAGTAGTTAAGAGCCAGGCCTAATCGGATGGTG


256_189
TCGGTTGT
ACAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 321





NGSPLEx
TCGCGAAAT
CTGTC
CGAGTTCCAGAGACAATATCAAAATTACCCTCCTTTTGGT


256_190
TCGGTTGT
ACTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 322





NGSPLEx
TCGCGAAAT
CTCTG
GGTGAGAGAACTAATAGCAACCAGGCAACTGAGGACGAA


256_191
TCGGTTGT
TCTG
GTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 323





NGSPLEx
TCGCGAAAT
CTCAC
TTGGGGTGCTTTATCTTCTTTGAGTTTTCGCACAAGATGG


256_192
TCGGTTGT
ACTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 324





NGSPLEx
TCGCGAAAT
CTGTG
GGGCATGGGCTCACATTCACTTCCTTTATAACTCCATCCT


256_193
TCGGTTGT
TGTG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 325





NGSPLEx
TCGCGAAAT
CAGTC
GCCTGTTTTCCCTTTGCTCCCCTTTTCCCTTTTGTTTGCA


256_194
TCGGTTGT
TCAG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 326





NGSPLEx
TCGCGAAAT
GAGAC
CATTTTTCCGATAGTTAATAGTAATGGAGTAATAATGTTG


256_195
TCGGTTGT
TCTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 327





NGSPLEx
TCGCGAAAT
GTGAC
CACTTGGCCCTTTCTCTTCTTATCTCCTCCCAGTTCTGGT


256_196
TCGGTTGT
TCTG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 328





NGSPLEx
TCGCGAAAT
GACTG
TCGTCCTCCTCCTCTTCATCCACACCATCCACCTCGGTG


256_197
TCGGTTGT
TCAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 329





NGSPLEx
TCGCGAAAT
GACAG
CCTCCTCTTCCTCCCCACCTTCTTCCTCTTCTTCGTCTAC


256_198
TCGGTTGT
TGAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 330





NGSPLEx
TCGCGAAAT
GACTG
ACGATGGCGGAGAAAGGAAGAGGAGGGAAGCTGGCGG


256_199
TCGGTTGT
AGAG
AATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 331





NGSPLEx
TCGCGAAAT
GAGAG
TATAATACAAAAAAAGACCAAAAAACAAAACAAAACAAAA


256_200
TCGGTTGT
ACAG
CATCAATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 332





NGSPLEx
TCGCGAAAT
CTCAC
AACACAAGTGTGTTGTTGTCTTCTATCTTCTTCATGGCAT


256_201
TCGGTTGT
TGAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 333





NGSPLEx
TCGCGAAAT
GAGTG
ACCAAAACCACAATTTCTGCAGTTTAAAATGTTTCACTTG


256_202
TCGGTTGT
ACAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 334





NGSPLEx
TCGCGAAAT
CACAG
CCGCTGCTCGGTCCCCCAGGCCCCGCCGTCCTTGCTGT


256_203
TCGGTTGT
AGTG
TTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 335





NGSPLEx
TCGCGAAAT
GACTG
CGAGATCCTGGTGCTCCCACTCGCGTTGCTGCAGCAAGA


256_204
TCGGTTGT
AGTG
AATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 336





NGSPLEx
TCGCGAAAT
CACTG
GCCGGCCGGGGTGGGGAACGAGCGCCGGGTTCCGTCC


256_205
TCGGTTGT
TCAG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 337





NGSPLEx
TCGCGAAAT
GTCAG
TCTCTGCCACCGCTGGTGCTGCTGTCTCCCACTCGGTGG


256_206
TCGGTTGT
AGTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 338





NGSPLEx
TCGCGAAAT
CTGTG
CATCGAAGACGCTCGCTTCAGAAATGTCCCTGACTGCTG


256_207
TCGGTTGT
AGTG
CGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 339





NGSPLEx
TCGCGAAAT
CTGAC
GTCTTTCAGGTCAATGTAGTGCTGCTTCAGGTGTTCTTCA


256_208
TCGGTTGT
ACTG
GAGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 340





NGSPLEx
TCGCGAAAT
CTGTC
CATCAGCATAGCCTCCGATGACCATGGTGTTCCACAAAG


256_209
TCGGTTGT
TGAG
GGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 341





NGSPLEx
TCGCGAAAT
CACTG
GATGCCCAGAATCAGGGCCCAGATGTTCAGGCACTTGG


256_210
TCGGTTGT
ACTG
CGGTGGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 342





NGSPLEx
TCGCGAAAT
CAGTG
AGAACCGGAAGAGAAAGGGGCTGCGGTGCAGCACGGGA


256_211
TCGGTTGT
TCAG
AATAGGGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 343





NGSPLEx
TCGCGAAAT
GTGAG
CCCCCCAACCCTCACTGTTTCCCGTTGCCATTGATGGTG


256_212
TCGGTTGT
AGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 344





NGSPLEx
TCGCGAAAT
CACTG
ACCTCATAGGTGCCTGCGTGGGCGCTCTTGTGGTCCAG


256_213
TCGGTTGT
ACAG
GCTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 345





NGSPLEx
TCGCGAAAT
GAGAC
ACAGGAGTCTTGCCCAAGCCCTGTCATGTCAGTGTGTGT


256_214
TCGGTTGT
TGTG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 346





NGSPLEx
TCGCGAAAT
CAGTG
CTTCTTCAAGGTGATATAGACGCTGCCCGACGTCCGGTG


256_215
TCGGTTGT
TCTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 347





NGSPLEx
TCGCGAAAT
GTGTC
GCCATCTGGGCCATCAGACCTGGCTGCCGGGGCGCATG


256_216
TCGGTTGT
TGAG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 348





NGSPLEx
TCGCGAAAT
GACTC
GCTTCTTGGGAAATGAAGCCACAGCCAGCTCATATATGT


256_217
TCGGTTGT
TGAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 349





NGSPLEx
TCGCGAAAT
CAGAG
CTCATCCACGATGGCTGCTATCGGTAAACAGTTAAAACA


256_218
TCGGTTGT
TCTG
GTCTGTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 350





NGSPLEx
TCGCGAAAT
GTCAG
TGACCCGCTCGATCGGAGCCACGGCCGTCTTGGAGATG


256_219
TCGGTTGT
AGAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 351





NGSPLEx
TCGCGAAAT
CAGTC
GGGTGATCAGCTGTGAGGCATTGAACTTGGCCACCACAC


256_220
TCGGTTGT
AGTG
TCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 352





NGSPLEx
TCGCGAAAT
GTGTC
ACAGCACAGTAACAAAGTTATTAGGAAAACAGGACTACC


256_221
TCGGTTGT
TGTG
ACAAAGATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 353





NGSPLEx
TCGCGAAAT
CAGAC
ACCAATGTTTTTTAGAATAGTGGCACCATCATTGGTTGGT


256_222
TCGGTTGT
TGAG
CGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 354





NGSPLEx
TCGCGAAAT
GACTG
GCAGTTTACGCTGTCTAGCCAGAGTTTCACCGTAAATATG


256_223
TCGGTTGT
TCTG
ATTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 355





NGSPLEx
TCGCGAAAT
GTCTC
CACTCTTTCACTTAAAGAGATATAGCTAGAAGGATTCACA


256_224
TCGGTTGT
ACAG
GTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 356





NGSPLEx
TCGCGAAAT
GACAC
ACCTTCAGGTCGTCCAGCTGTTTCAGCAGCTCCTCCTGG


256_225
TCGGTTGT
ACAG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 357





NGSPLEx
TCGCGAAAT
CACAG
GCCGTCAACTTGCGTCGGAACATGGTCCCCGCTTCTCGC


256_226
TCGGTTGT
TCAG
TCTGGTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 358





NGSPLEx
TCGCGAAAT
GTGAC
CGATCCAAAAAGTGCGCGATGCGAGTAGTCAAGTCGTAC


256_227
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 359





NGSPLEx
TCGCGAAAT
CTGTC
AGACAATGGTCCCTCTATTTCAACACCTTTTTCGGTGACA


256_228
TCGGTTGT
TCTG
GTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 360





NGSPLEx
TCGCGAAAT
GAGTC
GGTGATCTTGCTCTTGCTCCTTTCGATGGTCACCACCCC


256_229
TCGGTTGT
ACTG
TCCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 361





NGSPLEx
TCGCGAAAT
CTCTC
AACAGCCTTTAGTTCTACAGGAAATGGCACTGATGGACA


256_230
TCGGTTGT
TGTG
GAAGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 362





NGSPLEx
TCGCGAAAT
GAGAG
CCGGCTGTCTGTCTTGGTGCTCTCCACCTTCCGCACCAC


256_231
TCGGTTGT
TCTG
CTCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 363





NGSPLEx
TCGCGAAAT
CTGAG
GGGAGGTGAACCCAGAACCAGTTCCCCCACCAAAGCTG


256_232
TCGGTTGT
AGAG
TGGAAATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 364





NGSPLEx
TCGCGAAAT
GAGTG
TCACAACAGGGGAGGCCTTGGTGAAAGCTGGGTGGAAA


256_233
TCGGTTGT
AGTG
ACCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 365





NGSPLEx
TCGCGAAAT
CTGTG
GTGGAGTCTAGAGGATCCACAGCTGGATAGATGCCCAG


256_234
TCGGTTGT
ACAG
CTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 366





NGSPLEx
TCGCGAAAT
CACTG
AGGTAAAGGCCTGCAGCGATGAAACAGTTGTAGCTGACT


256_235
TCGGTTGT
AGAG
TGCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 367





NGSPLEx
TCGCGAAAT
CTCAG
TCATTGATTGGTTGCCCGTCAAATCGGAATCTGATCTGCT


256_236
TCGGTTGT
TCAG
GGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 368





NGSPLEx
TCGCGAAAT
CTGTG
GCTGAAACTTTCACAGGCTTCACAATCTTTTGCTTAGGTG


256_237
TCGGTTGT
TGAG
CTGCCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 369





NGSPLEx
TCGCGAAAT
GTGAC
CACATAGAAGTCCAGGCCGTAGATACCAATGCTTGGTGG


256_238
TCGGTTGT
AGTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 370





NGSPLEx
TCGCGAAAT
CTGAC
ACCATGCCCAGCACATCCTGCACATGCTGGCCCAGGTTG


256_239
TCGGTTGT
TCAG
GAGCCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 371





NGSPLEx
TCGCGAAAT
GTCAG
GGTGATGGTAGCCTTTCTGCCCAGCGCGTGCCACAGTG


256_240
TCGGTTGT
ACTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 372





NGSPLEx
TCGCGAAAT
CACTG
GCCGCATCCGCGTCAGATTCCCAAACTCGCGGCCCATTG


256_241
TCGGTTGT
AGTG
TGGCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 373





NGSPLEx
TCGCGAAAT
CTCAG
TTGCTGTCACCAGCAACGTTGCCACGACGAACATCCTTG


256_242
TCGGTTGT
AGAG
ACAGACATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 374





NGSPLEx
TCGCGAAAT
CAGTC
GCTGGTATAAGGTGGTCTGGTTGACTTCTGGTGTCCCCA


256_243
TCGGTTGT
ACAG
CGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 375





NGSPLEx
TCGCGAAAT
GAGAG
CGGCATCCTCTCAGGAGGGCCGGTCCGGGTCTCAGCGC


256_244
TCGGTTGT
AGTG
GCCTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 376





NGSPLEx
TCGCGAAAT
CAGAC
AGGTTAACCATGTGCCCGTCGATGTCCTTGGCGGAAAAC


256_245
TCGGTTGT
AGAG
TCGTGCATGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 377





NGSPLEx
TCGCGAAAT
GAGTC
ACCACAAACTCTTCCACCAGCCAGCATGGCAAATTTGAG


256_246
TCGGTTGT
TGTG
GTGCTTGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 378





NGSPLEx
TCGCGAAAT
CTGAC
TGGAGATTGCAGTGAGCTGAGATCACACCACTGGGCTCC


256_247
TCGGTTGT
TCTG
AGCCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 379





NGSPLEx
TCGCGAAAT
CAGTG
GGCCAGTGGTCTTGGTGTGCTGGCCTCGGACACGAATG


256_248
TCGGTTGT
TGTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 380





NGSPLEx
TCGCGAAAT
CACAG
GCAGCTGGAGCATCTCCACCCTTGGTATTTCTGGTGTAA


256_249
TCGGTTGT
ACTG
TGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 381





NGSPLEx
TCGCGAAAT
CTCTC
GTAGCTGGGGGTGCTGGGGTTCATTCTCGGCACGGCTG


256_250
TCGGTTGT
AGTG
CTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 382





NGSPLEx
TCGCGAAAT
GTCAC
GCTGTAACCACACCGACGCGCGAGCTCTGCGCGGGCTT


256_251
TCGGTTGT
AGTG
CACTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 383





NGSPLEx
TCGCGAAAT
CTGTC
TCCAGGTCGATCTCCAAGGACTGGACTGTACGTCTCAGC


256_252
TCGGTTGT
AGAG
TCTTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 384





NGSPLEx
TCGCGAAAT
GACAG
TTAACCTACCACTGTTTTGTTTAGAGCGAACACAGTGTGG


256_253
TCGGTTGT
TGTG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 385





NGSPLEx
TCGCGAAAT
GACAC
TCTCCTCCAGGGTGGCTGTCACTGCCTGGTACTTCCATG


256_254
TCGGTTGT
ACTG
GTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 386





NGSPLEx
TCGCGAAAT
GAGTG
CACGACAGCAAATAGCACGGGTCAGATGCCCTTGGCTGA


256_255
TCGGTTGT
ACTG
AAAGTGGTCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 387





NGSPLEx
TCGCGAAAT
GTCAC
GGGACCAGCCGTCCTTATCAAAGTGCTCCCAGAAATTGG


256_256
TCGGTTGT
TCAG
TCGGTGCTCGCAGGCTCGGCA



SEQ ID NO: 131

SEQ ID NO: 388












Name
Region 1
Region 2





Capture
CWSWSWS
ACAACCGAATTTCGCGAT TTTTTTTTTT\Biotin


Probe256
WS
(SEQ ID NO: 389)


plex
















TABLE 3





List of sequences used for proof of concept experiment FIG. 6


















Name
Region 3
Region 4
Region 5





Pre-
TAGCGCCT
CTCTCT
TAGCGCCTGCGGCCTGTCTCTCTCTGUAAACGCATCGG


cursor
GCGGCCT
CTGU
TCGAATTATCTCCTGCTAGGCACTCGCTGTGCCCTGGA


Oligo 1
GT
SEQ ID NO:
CTATCGTAA000ATGCTGTTT/36-FAM-3′



SEQ ID NO:
391
SEQ ID NO: 392



390







Pre-
TAGCGCCT
GTGTGA
CTTGCGGAACACGAATCGACCACTGACACAATTCGTAAT


cursor
GCGGCCT
CTGU
CTCATTGCAAGCGTTT/36-FAM-3′


Oligo 2
GT
SEQ ID NO:
SEQ ID NO: 394



SEQ ID NO:
393




390







Pre-
TAGCGCCT
CAGAGA
ATGCCCATTCAGCCTCACGTGGTGCTGATTTGGGGTGT


cursor
GCGGCCT
CTGU
TT/36-FAM-3/


Oligo 3
GT
SEQ ID NO:
SEQ ID NO: 396



SEQ ID NO:
395




390












Name
Region 1
Region 2





Capture
CAGWSWS
ACAGGCCGCAGGCGCTA/iBiodT/TTTTTTT/iBiodT/TTTTTTT/3B


Probe256
WS
(SEQ ID NO: 397)


plex
















TABLE 4





List of sequences used for FIG. 10















Name/










Region
6
7
8





Precur
GTGGATGATC
Acustom-character C
UCGCTTCCATACCGGGCGATGGACACAATTAAGAT


sor
AACGC

CGCATTTAGAGTGAAGTATCAATCGGAAATCGTGC


Oligo 4
SEQ ID NO: 398

AGCGACC/36-FAM-3′





SEQ ID NO: 399





Precur
GTGGATGATC
Acustom-character C
UCAATCAACCAGATTAGGACTCGGTTCCCGTGAGA


sor
AACGC

AATAGAAGTCCGTATAAACGTTCAACGGGGTC/36-


Oligo 5
SEQ ID NO: 398

FAM-3′





SEQ ID NO: 400





Precur
GTGGATGATC
Acustom-character C
UCGCTTCCATACCGGGCGATGGACACAATTAAGAT


sor
AACGC

CGCATTTAGAGT/36-FAM-3′


Oligo 6
SEQ ID NO: 398

SEQ ID NO: 401





Name/





Region
1
4
2





Capture
GWSWSWST
GCGTTGAT
ATAGACTCG/iBiodT/TTTTTTT/iBiodT/TTTTTTT/3B


Probe

CATCCAC
SEQ ID NO: 403




SEQ ID NO:





402





Name/





RegionS
5
3





Pro-
AGTCTAT
GTGGATGA



tector

TCAACGC





SEQ ID NO:





398









All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.


XI. REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

  • SantaLucia Jr, J., & Hicks, D. (2004). The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415-440.
  • Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., & Zhang, D. Y. (2015). Continuously tunable nucleic acid hybridization probes. Nature methods, 12(12), 1191-1196.
  • Zhang, D. Y., Chen, S. X., & Yin, P. (2012). Optimizing the specificity of nucleic acid hybridization. Nature chemistry, 4(3), 208-214.

Claims
  • 1-81. (canceled)
  • 82. A method for generating a set of precursor oligonucleotide molecules, each comprising a target sequence, wherein each precursor oligonucleotide molecule comprises a fifth region that comprises the target sequence and a fourth region and a third region, wherein at least one of the fourth and third regions differs from any subsequence within the target sequence, the method comprising: (a) calculating for each of the precursor oligonucleotide molecules a standard free energy of hybridization between the precursor oligonucleotide molecule and (i) a first oligonucleotide comprising a second region that is complementary to the third region of the precursor oligonucleotide molecule, and (ii) a first region that is complementary to the fourth region of the precursor oligonucleotide molecule;(b) calculating a standard free energy of a capture reaction as the standard free energy of hybridization between each of the precursor oligonucleotide molecules and the first oligonucleotide and the standard free energy of hybridization between the first oligonucleotide and the target sequence;(c) rejecting the set of precursor oligonucleotide molecules if the standard free energy of the capture reaction does not meet a certain criterion;(d) repeating steps (a) to (c) until a set of precursor oligonucleotide molecules meets the criterion; and(e) producing the set of precursor oligonucleotide molecules.
  • 83. The method of claim 82, wherein the criterion is a negative free energy.
  • 84. The method of claim 82, wherein the method is a method for producing a set of precursor oligonucleotide molecules comprising a plurality of barcode sequences, wherein the third region is conserved across all precursor oligonucleotide molecules, and wherein the fourth region is unique for each precursor oligonucleotide molecule in the set of precursor oligonucleotide molecules; the method comprising: (a1) calculating for each precursor oligonucleotide molecule a standard free energy of hybridization between the precursor oligonucleotide molecule and (i) a first oligonucleotide comprising a second region that is complementary to the third region of the precursor oligonucleotide molecule, and (ii) a first region that is complementary to the fourth region of the precursor oligonucleotide molecule;(a2) calculating a standard free energy of hybridization of folding for each precursor oligonucleotide molecule and for each first oligonucleotide;(b) calculating a standard free energy of a capture reaction as the standard free energy of hybridization between the precursor oligonucleotide molecule and the first oligonucleotide and the standard free energy of folding of the first oligonucleotide and the standard free energy of folding of the precursor oligonucleotide molecule;(c) rejecting the set of precursor oligonucleotide molecules if the standard free energy of the capture reaction for any precursor oligonucleotide molecules exceeds a certain criterion;(d) repeating steps (a) to (c) until a set of precursor oligonucleotide molecules meets the criterion; and(e) producing said set of precursor oligonucleotide molecules.
  • 85. The method of claim 84, wherein the criterion is a maximum range of no more than 5 kcal/mol between a lowest standard free energy of capture and a highest standard free energy of capture for the set of precursor nucleotide sequences.
  • 86. The method of claim 84, wherein the fourth region is defined as a barcode sequence of length n.
  • 87. A capture probe library comprising: a plurality of oligonucleotides comprising a first plurality of oligonucleotides, wherein each oligonucleotide of the first plurality of oligonucleotides comprises: a first region comprising a first nucleotide sequence comprising at least 3 variable positions, wherein each variable position comprises a nucleotide selected from at least two possible nucleotides, wherein the first nucleotide sequence comprising at least 3 variable positions is unique to each oligonucleotide, anda second region comprising a second nucleotide sequence.
  • 88. The capture probe library of claim 87, further comprising a second plurality of oligonucleotides, wherein each oligonucleotide in the second plurality of oligonucleotides comprises a third region, wherein the third region is complementary to the second region.
  • 89. The capture probe library of claim 88, wherein a concentration of a second oligonucleotide is greater than a sum of the concentrations of each oligonucleotide of the first plurality of oligonucleotides.
  • 90. The capture probe library of claim 87, wherein the first nucleotide sequence further comprises an “S” degenerate nucleotide at one or more of the variable positions and/or a “W” degenerate nucleotide at one or more of the variable positions, but does not comprise an “N” degenerate nucleotide at any position, wherein the length of the first nucleotide sequence is between 5 and 50 nucleotides, wherein the number of variable nucleotides is between 3 and 30, and wherein the length of the second nucleotide sequence is between 5 and 50 nucleotides.
  • 91. The capture probe library of claim 87, wherein the second nucleotide sequence of the second region is conserved across each oligonucleotide in the first plurality of oligonucleotides.
  • 92. The capture probe library of claim 87, wherein the second nucleotide sequence comprises an “S” degenerate nucleotide at one or more position and/or a “W” degenerate nucleotide at one or more position, but does not comprise a “N” degenerate nucleotide at any position.
  • 93. The capture probe library of claim 87, wherein the standard free energies of binding between each oligonucleotide in the first plurality of oligonucleotides and a DNA sequence complementary to the entire sequence of the respective oligonucleotides in the first plurality of oligonucleotides are within 5 kcal/mol of each other.
  • 94. An oligonucleotide library comprising: (a) the set of precursor oligonucleotide molecules generated by claim 84, wherein the fourth region comprises a barcode sequence comprising a nucleotide sequence of n nucleotides in length, wherein the barcode sequence of each species of precursor oligonucleotide molecule is different, wherein 2n is greater than or equal to the number of unique target sequences, wherein the fifth region comprises a target sequence that is unique among the species of precursor oligonucleotide molecules in the set; and(b) a capture probe library of claim 91, wherein the first region comprises a nucleotide sequence of n nucleotides in length, wherein each nucleotide in the nucleotide sequence of n nucleotides in length is selected from two or more nucleotides, wherein the first region is unique among the species of capture probe in the plurality,wherein the second region is complementary to the third region, and wherein the fourth region of each species of precursor molecule is complementary to the first region of a species of capture probe.
  • 95. An aqueous solution comprising an oligonucleotide library of claim 94.
  • 96. A method for producing an oligonucleotide library comprising a plurality of distinct target oligonucleotides each having a specified sequence, the method comprising: (a) obtaining the set of precursor oligonucleotide molecules generated by claim 84, wherein the fourth region comprises a barcode sequence comprising a nucleotide sequence of n nucleotides in length, wherein the barcode sequence of each species of precursor oligonucleotide molecule is different, wherein 2n is greater than or equal to the number of unique target sequences, wherein the fifth region comprises a target sequence that is unique to the species of precursor oligonucleotide molecules in the set;(b) obtaining a capture probe library of claim 91, wherein the first region comprises a nucleotide sequence of n nucleotides in length, wherein each nucleotide in the nucleotide sequence of n nucleotides in length is selected from two or more nucleotides, wherein the first region is unique to the species of capture probe in the plurality, wherein the second region is complementary to the third region, and wherein at least one first region is complementary to a fourth region;(c) mixing the precursor oligonucleotide molecules obtained in step (a) and the capture probe library obtained in step (b) in an aqueous hybridization buffer;(d) removing precursor oligonucleotide molecules not bound to the capture probes; and(e) enzymatically or chemically cleaving the fifth region from the remaining precursor oligonucleotide molecules, thereby obtaining an oligonucleotide library comprising a plurality of distinct target oligonucleotides each having a specified sequence.
  • 97. A method for purifying one or more target nucleic acid molecules from a sample comprising a set of species of precursor oligonucleotide molecules, wherein each species of precursor oligonucleotide molecule comprises a fifth region comprising a target sequence, a fourth region comprising a sequence unique to the species of precursor oligonucleotide molecule in the set, wherein the fourth region is a barcode sequence of length n, wherein 2n is greater than or equal to the number of unique target sequences, and a third region that is conserved across all precursor oligonucleotide molecules in the set, the method comprising: (a) contacting the sample with a capture probe library of claim 91 at temperature and buffer conditions to allow for hybridization, wherein the first region comprises a nucleotide sequence of n nucleotides in length, wherein each nucleotide in the nucleotide sequence of n nucleotides in length is selected from two or more nucleotides, wherein the first region is unique among the species of capture probe in the plurality, wherein the second region is complementary to the third region, and wherein the fourth region of each species of precursor molecule is complementary to the first region of a species of capture probe(b) separating the plurality of species of precursor oligonucleotide molecules hybridized to the plurality of capture probes from the species of precursor oligonucleotides not hybridized to the plurality of capture probes;(c) treating the plurality of species of precursor oligonucleotide molecules hybridized to the plurality of capture probes with a cleavage agent sufficient to site-specifically cleave the plurality of species at a site to separate the fifth regions from at least a portion of the third and fourth regions; and(d) recovering the fifth regions from the plurality of capture probe species and at least a portion of the third and fourth regions, thereby producing one or more purified target nucleic acid molecule.
  • 98. The method of claim 97, wherein the set of species of precursor oligonucleotide molecules is a set of precursor oligonucleotide molecules produced by the method of claim 86.
  • 99. The method of claim 97, wherein each capture probe species further comprises a second oligonucleotide comprising a ninth region, wherein the ninth region is complementary to the second region.
  • 100. The method of claim 99, wherein each first oligonucleotide further comprises a seventh region, wherein each second oligonucleotide further comprises an eighth region, and wherein the seventh region is complementary to the eighth region.
  • 101. A method for purifying multiple target sequences from a sample comprising a plurality of precursor oligonucleotide molecules each comprising a target sequence region and a non-target sequence region, wherein each precursor oligonucleotide molecule comprises a different target sequence region, the method comprising: (a) providing a plurality of capture probes, wherein each capture probe has (i) a first region having a sequence that is complementary to the non-target sequence region of one of the precursor oligonucleotide probes and (ii) a first moiety sufficient to allow for isolation of the capture probe;(b) adding the plurality of precursor oligonucleotide molecules to a sample comprising the plurality of capture probes under conditions sufficient to promote hybridization of each capture probe to the non-target sequence region of the precursor oligonucleotide molecules complimentary thereto, thereby forming a plurality of capture probe-precursor oligonucleotide molecule complexes; and(c) isolating the plurality of capture probe-precursor oligonucleotide molecule complexes using the first moiety, thereby purifying the unhybridized precursor oligonucleotide molecules from the capture probe-precursor oligonucleotide molecule complexes.
Parent Case Info

This application claims the benefit of U.S. Provisional Patent Application No. 62/332,778, filed May 6, 2016, the entirety of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/031346 5/5/2017 WO 00
Provisional Applications (1)
Number Date Country
62332778 May 2016 US