This invention is related to the field of stress measurement devices and more specifically to a safety assembly in case of load cell failure.
Beam load cell stress measurement devices are well-known in the art.
As force 145 is applied to load cell 100, the second part 120 moves in accordance with the applied force, and measurement component 130 is stressed in response. Beam type transducers are known in the prior art and it is known how to limit the deflection. See U.S. Pat. No. 4,051,451 entitled, “Beam Type Transducers Employing Dual Direction Limiting and Means”, which issued on Sep. 27, 1977 to A. D. Kurtz et al and is assigned to Kulite Semiconductor Products, Inc., the assignee herein. That patent shows a beam subjected to a transverse force (up and down) to move the beam with a stop above and below the beam.
See also U.S. patent application Ser. No. 09/814,903 entitled, “Force Transducer with Environmental Protection” filed Mar. 22, 2001 for A. D. Kurtz et al. and assigned to the assignee herein. This application shows a beam load cell as utilized herein.
In the load cell transducer, as shown in
A beam load cell of the type having a stationary member and a moveable member with a beam positioned therebetween, such that when a force is applied to the moveable member, the beam is moved in the direction of the force and for an undesirably large force the beam can rupture. In combination with the load cell there is a stop member to limit the movement of the moveable member in either a push or pull direction and therefore, to limit the movement of the beam. The stop comprises a longitudinal tubular member which surrounds the stationary and moveable members and the beam, and stop means are located on the inner surface of the tubular member to coact with the moveable member for limiting the distance, the movable member travels upon application thereto of an applied push or pull force, the stop means therefore limits the force applied to the beam to prevent it from breaking or rupturing.
a illustrates a cross-sectional view, through a longitudinal axis of a fault-tolerant load cell in accordance with the principles of the invention;
b illustrates a cross-sectional view, through section A-A of the fault-tolerant load cell shown in
a and 3b illustrate enlargements of the engagement means of the fault-tolerance load cell shown in
a illustrates a cross-sectional view, through a longitudinal axis of another embodiment of a fault-tolerant load cell in accordance with the principles of the invention;
b illustrates a cross-sectional view, through section A-A of the fault-tolerant load cell shown in
a,
6
b,
6
c and 6d illustrate cross-sectional views of exemplary fault-tolerance load cells in accordance with the principles of the invention.
It is to be understood that these drawings are solely for purposes of illustrating the concepts of the invention and are not intended as a definition of the limits of the invention. The embodiments shown in
a illustrates a cross-sectional view, through a longitudinal axis, of a fault-tolerant load cell 200 in accordance with the principles of the invention. The same reference numerals designate similar parts as depicted in
b illustrates a cross-sectional view, through section A-A, of fault-tolerant load cell 200 in accordance with the principles of the invention. In this view, the insertion of engagement means 220 through channel 215 in collar 210 to engage recesses 225 in first part 110 are more clearly shown. In this case, three engagement means 220 are shown in a conventional orientation of 120 degrees to distribute any load that may be exerted thereon. Although only three pins 220 are illustrated, it would be appreciated that any number of pins may be used. The multiple pins also act as an alignment means to prevent the transducer from responding to off axis loads. The number of pins needed may be determined based on the material properties and thickness of the pin and the holding power necessary to retain the load cell after a failure of component 130. For example, pin 220 may be selected from materials such as a rigid plastic, nylon, carbon steel, stainless steel, based on the operating conditions and the expected loads that may cause failure. Thus, in light load conditions, plastic or nylon may be suitable materials, whereas in heavier loads or more critical situations, metal or carbon steel composites may be suitable. In conditions having high humidity, stainless steel may be an appropriate material.
Engagement means 220 is further illustrated as a pin that is press fit or snap fit into channels 215 L&R. However, it should be appreciated that channel, 215 L&R, recess 225 and 230 may be threaded. In this case, engagement means 220 L&R may be a screw, e.g., a set screw, that is screwed into channel 215 and recess 225 or other threaded device as a bolt.
a illustrates an enlarged view of engagement of pin 220 through passage 215 in collar 210 to engage recess 225 in first part 110. In this illustrated case, a tight fit between pin 220 and recess 225 is desired. Accordingly, recess 225 is preferably in the order of 1-2 mils greater than pin 220. In this case, pin 220 may be snap-fit or press-fit into passage or channel 215 and recess 225. As noted above, channel 215 and/or recess 225 may be threaded which would allow for the use of a screw or set-screw.
b illustrates an enlarged view of engagement of a threaded pin 220 through a threaded passage 215 in collar 210 to enter recess 230 in second part 120. In this case, recess 230 is larger than pin 220 to allow a slip fit between pin 220 and recess 230 as second part 120 is required to move freely in response to the application of force 145. The force 145 is a pulling force as compared to a force in the opposite direction which is a pushing force (double arrow). A large pulling force 145 can cause the beam to rupture or fracture. Similarly, a large pushing force can bend the beam as in a U-shape and break the beam as well. Once the beam is broken, as seen in
When a larger force 145 is applied, the pin 220 abuts against the wall 250 for a large pull force 145. For a push force, the pin abuts against wall 251. Thus, the walls 250 and 251 of the channel 230 engage the pin 220 for a push or pull and stop the movement of the beam in either direction.
As further noted, if the load beam 130 fails, second part 120 is no longer restrained by load beam 130 and is not coupled to first part 110 and moves or shifts in a manner greater than desired in the prior art. In this case, the movement or shift of second part 120 causes the substantially vertical walls of recess 230 to engage pin 220. Hence, the integrity of load cell 100 is maintained. For example, when load beam 130 is a single beam measuring 0.270×0.120×0.4 inches of 15-5 steel it can be determined that a load or force of 4455 lbs. can be applied before a failure of the load beam 130 occurs. However, safety collar or assembly 110 incorporating three pins 220 of 3/16 diameter, each having a shear strength of 3600 lbs., may retain the integrity of cell 110 up to a force of 10,800 lbs. However, the main purpose is to stop the movement of the beam when excessive forces are applied and therefore prevent the rupture of the beam.
Although the use of holes on first part 110 and a groove on second part 120 is shown, it would be appreciated that recess 225 may also be a groove that allows a tight-fit between pin 220 and recess 225 along the longitudinal axis. Similarly, recess 230 may be an elongated hole or slot that allows for a slip fit between pin 220 and recess 230 in the longitudinal axis.
a illustrates a cross-sectional view, through a longitudinal axis, of a second embodiment 500 of the present invention. In this embodiment, channel 520 passes though first part 110 and engagement means 510 passes through oppositely opposed channels 215 in collar 210 and through channel 520.
b illustrates a cross-sectional view, through section A-A, of the embodiment of the invention shown in
a-6d illustrate further exemplary embodiments of the present invention. For example,
While there has been shown, described, and pointed out fundamental novel features of the present invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the apparatus described, in the form and details of the devices disclosed, and in their operation, may be made by those skilled in the art without departing from the spirit of the present invention. It is expressly intended that all combinations of those elements that perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated.
Number | Name | Date | Kind |
---|---|---|---|
3824846 | Andersson | Jul 1974 | A |
4009607 | Ficken | Mar 1977 | A |
4051451 | Kurtz et al. | Sep 1977 | A |
4199980 | Bowman | Apr 1980 | A |
4338825 | Amlani et al. | Jul 1982 | A |
4364279 | Stern et al. | Dec 1982 | A |
4561512 | Tramposch | Dec 1985 | A |
4598781 | Tramposch | Jul 1986 | A |
4744429 | Kellenbach | May 1988 | A |
5068635 | Yajima | Nov 1991 | A |
5313023 | Johnson | May 1994 | A |
5335544 | Wagner et al. | Aug 1994 | A |
5440077 | Konishi et al. | Aug 1995 | A |
5796007 | Panagotopulos et al. | Aug 1998 | A |
5955771 | Kurtz et al. | Sep 1999 | A |
6736008 | Kumagai et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040187608 A1 | Sep 2004 | US |