Exemplary embodiments of the present invention relate generally to systems and methods for controlling traffic using a stop sign with traffic control features.
Traffic congestion is frequently caused by roadway intersections. Traffic often becomes backed up at intersections where conventional stop signs are used to control traffic because drivers are unsure of which driver has the right of way to cross the intersection first. Furthermore, traffic collisions often occur when one driver proceeds despite not having the right of way. While traffic lights can provide for improved traffic flow and reduced accidents, they are too expensive to install at every intersection. Furthermore, stop signs are not adaptable to changing traffic conditions.
Therefore, what is needed is stop sign with traffic control features. The present invention is a stop sign with traffic control features.
An assembly may comprise a conventional stop sign, which may be mounted to a post, pole, or the like. A traffic control unit may comprise one or more signaling devices which direct the driver of a nearby vehicle to proceed or wait. A vehicle detection device may detect vehicles located at or near the assembly. A controller may receive information from the vehicle detection device and direct the traffic control unit. The controller may receive instructions from a central command unit. The central command unit may be in communication with several or all assemblies for a given intersection. A power supply, such as a solar panel, may be electrically connected with various components of the assembly to provide power to the same.
The assembly may continuously scan for the arrival of a vehicle. Once a vehicle is detected, the assembly may note the arrival time and transmit the arrival time to the command center. The command center may determine if an earlier arrival time within a predetermined amount of time has been logged by the same or a different assembly for an intersection. If not, the command center may direct the respective assembly to set its traffic signaling device to proceed. If not, the system may wait until the predetermined time is reached and then direct the respective assembly to set its traffic signaling device to proceed.
Distracted drivers may not always notice a stop sign or a traffic signal indicated at a traffic signaling device. This may result in running of red lights, running of stop signs, or collisions. Even where there is merely a delay by the distracted driver in noticing a changing traffic signal, traffic delays, confusion for other drivers, and the like may result. In some cases, it may be safer to override or control the vehicle's advancement in turn through the intersection. Therefore, what is needed is the ability to communicate traffic signals and changes to drivers within their vehicles, and/or override driver actions or otherwise autonomously control vehicle movements based on such signals.
Systems and methods are disclosed for communicating traffic signals to a driver of a vehicle using certain systems located within a vehicle. Vehicles equipped with vehicle-based systems may wirelessly communicate with one or more assemblies and/or the command center. The vehicle-based systems may communicate an identifier for the vehicle which may be used to track which vehicle-based system to send proceed and wait signals to. Upon receipt of a proceed signal or a wait signal, the vehicle-based system may alert the driver to the same. If the driver attempts to proceed during a wait signal, the vehicle interface system may cause the vehicle to slow or stop. If the driver fails to proceed during a proceed signal, the vehicle-based system may further alert the driver to the proceed signal. Communication between the vehicle-based system and the assembly and/or the command center may be accomplished by one or more wireless communication devices.
The assemblies may be equipped to accommodate both vehicles having the vehicle-based systems, such as by way of wireless communication devices, and vehicles without the vehicle-based systems, such as by way of proximity sensors, cameras, combinations thereof, or the like.
In exemplary embodiments, without limitation, the upon receipt of a proceed signal, the vehicle-based system may command certain vehicle systems to advance the vehicle through the intersection autonomously by controlling certain vehicle systems. Upon receipt of a wait signal, the vehicle-based system may command certain vehicle systems to halt the vehicle.
Further features and advantages of the devices and systems disclosed herein, as well as the structure and operation of various aspects of the present disclosure, are described in detail below with reference to the accompanying figures.
In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:
Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
Embodiments of the invention are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
The assembly 10 may comprise a traffic signaling device 16. The traffic signaling device 16 may comprise one or more signaling devices 18A and 18B configured to provide wait and proceed signals. In exemplary embodiments, the signaling devices 18A and 18B comprise one or more colored lights, such as but not limited to red (for wait) and green (for proceed), configured to be selectively illuminated to signal the driver of a vehicle 70 to proceed or to wait. However, any type of signaling devices 18A and 18B is contemplated, such as but not limited to, flags, signs, speakers for producing an audio signal, some combination thereof, or the like. Any number and type of signaling devices 18A and 18B are contemplated. The signaling devices 18A and 18B on various assemblies 10 may be the same or different types. The traffic signaling device 16 may be mounted to the assembly 10, such as above the stop sign 12 though any location is contemplated. In other exemplary embodiments, the traffic signaling device 16 may be located in close proximity with the assembly 10.
The assembly 10 may comprise a vehicle detection device 19. The vehicle detection device 19 may comprise one or more sensors configured to detect the presence of one or more vehicles 70. The vehicle detection devices 19 may comprise, for example without limitation, cameras, radar, lasers, motion detectors, light sensors, audio sensors, ultrasound sensors, infrared sensors, weight sensors, metal detectors, image recognition software, proximity detectors, some combination thereof, or the like. Alternatively, or in addition, the vehicle detection devices 19 may comprise far-range wireless communication devices such as, but not limited to, wi-fi, cellular network connectivity devices, internet connectivity devices, radio transmitters/receivers, network adapters, combinations thereof, or the like, and/or near field communication devices, such as but not limited to, RFID, Bluetooth®, combinations thereof or the like. The vehicle detection devices 19 may be configured to receive signals from devices installed in vehicles 70 within signaling range of such the vehicle detection devices 19. The vehicle detection device 19 may be mounted to the assembly 10. However, in other exemplary embodiments, the vehicle detection device 19 may instead be located in close proximity with the assembly 10.
The assembly 10 may further comprise a controller 20. The controller 20 may be in communication with one or more of the traffic signaling devices 16 and the vehicle detection device 19. The controller 20 may receive data from the vehicle detection device 19 and provide instructions to the traffic signaling device 16. As will be explained in greater detail, in exemplary embodiments the controller 20 is in communication with a command center 32. In such embodiments, the controller 20 may communicate information from the vehicle detection device 19 to the command center 32 and receive instructions from the command center 32, which may be relayed to the traffic signaling device 16.
The controller 20 may further comprise a time keeping device 28. The time keeping device 28 may be a clock, timing device, timer, some combination thereof, or the like. The time keeping device 28 may be in electronic communication with the processor 24. It is contemplated that the vehicle detection device 19 may alternatively or additionally comprise the time keeping device 28. Any location of the time keeping device 28 is contemplated.
The assembly 10 may further comprise a power source 21. The power source 21 may be in electrical connection with one or more of the traffic control unit 16, the vehicle detection device 19, and the controller 20. In exemplary embodiments, the power source 21 may comprise a solar panel. Alternatively, or in addition, the power source 21 may comprise one or more batteries. Alternatively, or in addition, the power source 21 may comprise a connector for connecting to utility power.
All of the assemblies 10 for a given intersection 36 may be in electronic communication with the command center 32 by way of a wired or wireless connection. In exemplary embodiments, the command center 32 may be buried near the respective intersection 36, though any location is contemplated. It is contemplated that assemblies 10 for more than one intersection 36 may be in communication with a common command center 32.
The command center 32 may comprise one or more electronic storage devices 38, processors 40, and network connection devices 42. The electronic storage device 38 may be configured to receive and store data from the various assemblies 10. The electronic storage device 38 may further comprise executable software instructions, which when executed configure the processor 40 to perform one or more of the processes disclosed herein. The processor 40 may be configured to retrieve the data and/or executable software instructions stored at the electronic storage device 38. The network connection device 42 may be configured to transmit and receive data, such as but not limited to data stored at the electronic storage device 38, to one or more of the controllers 20 for each assembly 10 and/or other remote device(s). Such communication may be accomplished by way of a network such as the internet, intranet, cellular network, world wide web, or the like. Such communication may be accomplished by wired or wireless means.
If no vehicle 70 is detected, the assemblies 10 may continue to scan. Once a vehicle 70 is detected, the respective assembly 10 may determine the vehicle's 70 arrival time at the time keeping device 28. The arrival time may be stored such as at the one or more electronic storage devices 22 of the controller 20. The arrival time may be transmitted to the command center 32. This communication, in exemplary embodiments, is made by way of the network connection device 26 in the respective assembly 10 and the network connection device 42 at the command center 32.
The command center 32 may determine if an earlier arrival time that is within a predetermined amount of time is stored at the electronic storage device 38 for the command center 32. The predetermined amount of time may be any amount of time. In exemplary embodiments, the predetermined amount of time is set such that a vehicle 70 may safely clear the intersection. The predetermined amount of time may be set from historical information.
If no earlier arrival time falling within the predetermined amount of time is found, the command center 32 may direct the respective assembly 10 to set the respective traffic signaling device 16 to proceed. For example, without limitation, the respective traffic signaling device 16 may illuminate a green colored light.
If an earlier arrival time falling within the predetermined amount of time is determined, the command center 32 may direct the respective assembly 10 to wait a sufficient amount of time such that the predetermined amount of time is reached and subsequently instruct the assembly 10 to set the respective traffic signaling device 16 to proceed. Alternatively, the command center 32 may wait until the predetermined amount of time is reached and subsequently direct the respective assembly 10 to set its respective traffic signaling device 16 to proceed.
The vehicle detection device 19 for the assembly 10 which was directed to set its traffic signaling device 16 to proceed may scan to ensure that the vehicle 70 signaled to proceed has actually proceeded. If the vehicle 70 has not proceeded, the vehicle detection device 19 may continue to scan until the vehicle 70 proceeds. In exemplary embodiments, the respective traffic signaling device 16 may take further action such as flashing a green light, emitting an audible tone, some combination thereof, or the like. Once the vehicle 70 has proceeded, a confirmation message regarding the same may be sent to the command center 32. The command center 32 may then evaluate the next earliest vehicle 70 arrival time, thereby repeating the process.
In other exemplary embodiments, once directing the respective traffic signaling device 16 to proceed, the command center 32 may wait a second predetermined amount of time before directing the next respective traffic signaling device 16 to proceed. The second predetermined amount of time may be the same or different as the predetermined amount of time. The second predetermined amount of time may be, for example without limitation, a certain multiple of the predetermined amount of time.
The command center 32 may then repeat the evaluation process for the next subsequently logged entry. In this way, the command center 32 evaluates and processes the arrival times in the order in which they occurred such that earlier arrival times are given priority.
It is notable that while the command center 32 is evaluating the arrival times, the assemblies 10 may be continuously scanning for vehicles 70, storing, and transmitting the arrival times to the command center 32. In this way, each vehicle's 70 arrival time may be logged and addressed in turn. If no additional vehicles 70 have arrived in the intervening time, the assemblies 10 may simply continue to scan for vehicles 70.
In exemplary embodiments, the vehicle detection device 19 may be capable of scanning the entire intersection 36 to determine when a vehicle 70 has cleared the intersection. In such embodiments, once the vehicle 70 has cleared the intersection, a confirmation message regarding the same may be sent to the command center 32. The command center 32 may then evaluate the next earliest vehicle 70 arrival time. Each vehicle detection device 19 may comprise multiple sensors of the same or different type which may scan the same or different areas.
In the unlikely event that two identical arrival times are determined, the command center 32 may randomly direct one of the two assemblies 10 to wait the predetermined amount of time and direct the other assembly 10 to set the respective traffic signaling device 16 to proceed.
In exemplary embodiments, upon arrival of a vehicle 70 having one of the vehicle-based systems 50, the adjacent assembly 10, may detect the arrival of the vehicle 70. Such detection may be made by way of the vehicle detection device 19 for the assembly 10. Identifying information, such as but not limited to a unique identifier for the vehicle 70, may be transmitted from the vehicle-based system 50 to the command center 32 and/or the assembly 10, such as by way of the network communication device 56 to the vehicle detection device 19 and/or the network connection device 26. The command center 32 and/or the assemblies 10, such as but not limited to by way of the network communication device 56 to the vehicle detection device 19 and/or the network connection device 26, may transmit commands to provide a wait or proceed signal to the vehicle-based systems 50. Alternatively, or additionally, the assemblies 10, such as by way of the vehicle detection devices 19 and/or network connection device 26, may broadcast appropriate commands to a respective signaling range to be picked up by any vehicle-based system 50 in sufficient proximity to the assembly 10. Alternatively, or additionally still, the command center 32 may broadcast appropriate commands within a signaling range, such as by way of the network communication devices 42 with the identifiers for the vehicles, to be picked up by any vehicle-based system 50 in sufficient proximity to the command center 32.
In exemplary embodiments, the assemblies 10, or the vehicle detection device 19 in particular, may comprise a combination of sensors or communications devices such that traffic signaling may be accomplished both for vehicles 70 equipped with the vehicle-based system 50 and those which are not. For example, without limitation, the vehicle detection device 19 may comprise both a near field communication device and a camera. Where the camera detects a vehicle 70 but no identifier is received at the near field communication device, the arrival time of the vehicle 70 may be documented and the traffic signal of the traffic signaling device 16 may be adjusted accordingly in accordance with the exemplary techniques shown and/or described herein. Where the camera detects a vehicle 70 and/or an identifier is received at the near field communication device, the arrival time of the vehicle 70 may be documented with the identifier and the traffic signal of the traffic signaling device 16 may be adjusted accordingly in accordance with the exemplary techniques shown and/or described herein.
Identifiers for multiple vehicles 70, each having one of the vehicle-based systems 50, may be received at one or more of the assemblies 10 and passed to the command center 32 for determining which assembly 10 and vehicle 70 to signal to proceed in accordance with any of the exemplary techniques shown and/or described herein. Any type of kind of identifier for any number of vehicles 70, each having a same or different one of the vehicle-based systems 50, at any number of assemblies 10 may be received and processed at the command center 32 for one, or any number of intersections.
In other exemplary embodiments, the identifier may not be required. Instead, for example without limitation, a signal indicating proceed or wait may be sent by the vehicle detection device 19 associated with the assembly 10 for which the wait or proceed signal has been received from the command center for receipt by any vehicle-based systems 50 within signaling range of the vehicle detection devices 19. The signaling range of the vehicle detection devices 19 may be configured to reach only those vehicles 70 stopped adjacent to the assembly 10.
If the vehicle-based system 50 has received a wait signal and the vehicle system interface 60 indicates that the driver is attempting to move the vehicle 70, the vehicle system interface 60 may override the driver's commands and stop the vehicle 70 from moving. For example, without limitation, the vehicle system interface 60 may detect attempted movement where the braking system indicates a decrease or release of applied brakes, applications of a clutch, an increase in applied acceleration, a shift into drive, combinations thereof, or the like. For example, without limitation, the vehicle system interface 60 may cease vehicle 70 movement by applying or increasing braking at the braking system, decrease or cease the application of acceleration at the acceleration system, shift the transmission (e.g., into neutral, a lower gear, or park), combinations thereof, or the like. Alternatively, or additionally, the same or additional alerts may be transmitted to the driver at the driver alert systems 58. Examples of such further alerts including flashing lights, increasing illumination, playing an audible recording, replaying the audible recording, replaying the audible recording at a higher volume, displaying a message, redisplaying the same message or displaying a new message, combinations thereof, or the like.
If the vehicle-based system 50 receives a proceed signal from the command center 32, the vehicle-based systems 50 may be configured to alert the driver to the proceed signal. If the driver does not attempt to move the vehicle 70, such as within a predetermined period of time following alert of the proceed signal, one or more further alerts may be provided. Examples of such further alerts including flashing lights, increasing illumination, playing an audible recording, replaying the audible recording, replaying the audible recording at a higher volume, displaying a message, redisplaying the same message or displaying a new message, combinations thereof, or the like. Detection of movement, or lack thereof, may be made by way of the vehicle system interface 60. Detection of attempted movement may be made, for example without limitation, by releasing of brakes, application of acceleration, applications of a clutch, shifting transmission (e.g., into drive, a low gear), combinations thereof, or the like.
As illustrated for example, without limitation, at
As illustrated for example, without limitation, at
As illustrated for example, without limitation, at
In exemplary embodiments, without limitation, such vehicle 70 operation may be performed without regard to transmission of signals to/from the assemblies 10. For example, without limitation, such signals for halting and/or advancing vehicles 70 may be sent directly from the command center 32 to the vehicle-based systems 50.
As illustrated in
The assembly 10′ may comprise one or more cross-traffic vehicle detection devices 72. The cross-traffic vehicle detection devices 72 may be configured to detect the presence or non-presence of vehicles at the intersection 36 or within an area 74. The area 74 may comprise a predetermined area of or about the intersection. The area 74 may be a predefined distance from the cross-traffic vehicle detection devices 72, a predetermined size or shape, or the like. The area 74 may include some or all of an area of the intersection 36 located rearward of the assembly 10′.
The cross-traffic vehicle detection devices 72 may be configured to continuously or periodically scan the area 74. The cross-traffic vehicle detection devices 72 may be positioned on one or more rear portions of the traffic signaling device, the controller 20, the stop sign 12, the mounting device 14, combinations thereof, or the like. The cross-traffic vehicle detection devices 72 may be the same or different from the vehicle detection devices 19. For example, without limitation, the cross-traffic vehicle detection devices 72 may comprise the same or different components as the vehicle detection devices 19, may be calibrated differently, combinations thereof, or the like.
For example, without limitation, the cross-traffic vehicle detection devices 72 may comprise cameras, radar, lasers, motion detectors, light sensors, audio sensors, ultrasound sensors, infrared sensors, weight sensors, metal detectors, image recognition software, proximity detectors, combinations thereof, or the like. Alternatively, or in addition, the cross-traffic vehicle detection devices 72 may comprise wireless communication devices such as, but not limited to, wi-fi, cellular network connectivity devices, internet connectivity devices, radio transmitters/receivers, network adapters, combinations thereof, or the like, and/or near field communication devices, such as but not limited to, RFID, Bluetooth®, combinations thereof or the like. The cross-traffic vehicle detection devices 72 may be configured to receive signals from devices installed in vehicles 70 within signaling range of such the cross-traffic vehicle detection devices 72. The cross-traffic vehicle detection devices 72 may be mounted to the assembly 10′. However, in other exemplary embodiments, the cross-traffic vehicle detection devices 72 may instead be located in close proximity with the assembly 10′.
A single or multiple cross-traffic vehicle detection device 72 may be installed at, or in association with, a given assembly 10′. Where multiple cross-traffic vehicle detection devices 72 are so utilized, they may be of the same or different type. The cross-traffic vehicle detection devices 72 may be in electrical communication with the controller 20 and/or the traffic signaling device 16.
Alternatively, or additionally, detection of vehicles 70 within the area 74 may be used as confirmation that a vehicle 70 has proceeded through the intersection 36.
The assembly 10′ may be used by itself at an intersection 36. However, the assembly 10′ may be used in conjunction with other such assemblies 10′ and/or 10. Communication between such assemblies 10′ and/or 10 may be provided, such as but not limited to, by way of the command center 32, though such is not required. Where more than one assembly 10′ is used, the assemblies 10′ may be in communication with a command center 32 and may additionally utilize the logic shown and/or described herein, such as but not limited to, with respect to
The assemblies 10′ and/or 10 may be used with any type or kind of intersection 36. The size and shape of the areas 74 shown and/or described herein are merely exemplary and not intended to be limiting. Any size and/or shape area 74 may be utilized, such as but not limited to, by selection of type, kind, number, and/or location of sensors, calibration, power, combinations thereof, or the like. In exemplary embodiments, the assemblies 10′ may be calibrated or otherwise programmed such that the area 74 extends to cover at least a portion of any areas of the intersection 36 not having a stop indicator (e.g., where crossing traffic does not have to stop) and stop areas of any areas of the intersection 36 utilizing stop signs 12 not having the traffic control features of the present invention (e.g., a conventional stop sign).
Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
Certain operations described herein may be performed by one or more electronic devices. Each electronic device may comprise one or more processors, electronic storage devices, executable software instructions, and the like configured to perform the operations described herein. The electronic devices may be general purpose computers or specialized computing devices. The electronic devices may be personal computers, smartphones, tablets, databases, servers, or the like. The electronic connections and transmissions described herein may be accomplished by wired or wireless means.
This application is a continuation-in-part of U.S. application Ser. No. 17/201,266 filed Mar. 15, 2021, which is a continuation-in-part of U.S. application Ser. No. 17/158,365 filed Jan. 26, 2021, which is a continuation of U.S. application Ser. No. 16/682,723 filed Nov. 13, 2019, which claims the benefit of U.S. Provisional Application No. 62/769,034 filed Nov. 19, 2018, the disclosures of each of which are hereby incorporated by reference as if fully restated herein.
Number | Name | Date | Kind |
---|---|---|---|
2941099 | Picard | Jun 1960 | A |
4211382 | Bonfils | Jul 1980 | A |
4216989 | Tackett | Aug 1980 | A |
5673039 | Pietzsch et al. | Sep 1997 | A |
6243644 | Dengler | Jun 2001 | B1 |
6580374 | Schrage | Jun 2003 | B2 |
6693556 | Jones et al. | Feb 2004 | B1 |
7075427 | Pace et al. | Jul 2006 | B1 |
7371348 | Schleifer | May 2008 | B2 |
7696903 | Stam et al. | Apr 2010 | B2 |
8442750 | Tran et al. | May 2013 | B1 |
8793062 | Fino | Jul 2014 | B2 |
9198605 | Contant | Dec 2015 | B2 |
9550498 | Meyer et al. | Jan 2017 | B2 |
10055986 | Paruch et al. | Aug 2018 | B2 |
10095320 | Harms | Oct 2018 | B2 |
10173292 | Fullerton | Jan 2019 | B2 |
10176712 | Martins | Jan 2019 | B1 |
10211872 | Diebel | Feb 2019 | B1 |
10242783 | Smith | Mar 2019 | B2 |
10403142 | Shuff | Sep 2019 | B1 |
10650672 | Shuff | May 2020 | B2 |
10937309 | Lamoncha | Mar 2021 | B2 |
10998735 | Chien | May 2021 | B2 |
11598146 | Conboy | Mar 2023 | B2 |
20040183694 | Bauer | Sep 2004 | A1 |
20090224942 | Goudy | Sep 2009 | A1 |
20100062866 | Schnuckle | Mar 2010 | A1 |
20100283631 | Bryan | Nov 2010 | A1 |
20110283574 | Ellman | Nov 2011 | A1 |
20120175859 | Roth, Jr. | Jul 2012 | A1 |
20130100286 | Lao | Apr 2013 | A1 |
20140310243 | McGee | Oct 2014 | A1 |
20150084369 | Niemi | Mar 2015 | A1 |
20160005313 | Cholayil | Jan 2016 | A1 |
20170046954 | Eversen | Feb 2017 | A1 |
20170103650 | Amadon | Apr 2017 | A1 |
20180103240 | Barnes | Apr 2018 | A1 |
20190035263 | Loes | Jan 2019 | A1 |
20190206254 | Tao et al. | Jul 2019 | A1 |
20190279508 | Wang | Sep 2019 | A1 |
20200005634 | Shuff | Jan 2020 | A1 |
20200096977 | Itou et al. | Mar 2020 | A1 |
20210150891 | Lamoncha | May 2021 | A1 |
20210201663 | Lamoncha | Jul 2021 | A1 |
20210264774 | Lamoncha | Aug 2021 | A1 |
20210284254 | Vanga | Sep 2021 | A1 |
20210311137 | Chen | Oct 2021 | A1 |
20220305919 | Grayson | Sep 2022 | A1 |
20220379924 | Foster | Dec 2022 | A1 |
20220389932 | Wu | Dec 2022 | A1 |
20230036694 | Coughlan | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
3047398 | Jun 2018 | CA |
3022673 | Dec 2015 | FR |
3040104 | Feb 2017 | FR |
Entry |
---|
Evelots Flashing LED Auto Parking Signal, Amazon.com, site visited Aug. 21, 2018. |
PerfectStop Sign—Intelligent Stop Sign System, www.indiegogo.com, site visited Aug. 21, 2018. |
Safe-T-Signal Warning System, www.ritehite.com, site visited Aug. 21, 2018. |
Number | Date | Country | |
---|---|---|---|
20210264774 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62769034 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16682723 | Nov 2019 | US |
Child | 17158365 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17201266 | Mar 2021 | US |
Child | 17246031 | US | |
Parent | 17158365 | Jan 2021 | US |
Child | 17201266 | US |