The present invention relates to a stopper device for a grinding stone cover of a hand-held grinder, which is used, for example, for grinding materials such as stones.
A hand-held grinder has a main body portion having a substantially cylindrical body shape that receives an electric motor therein, the main body portion is used as a grip portion, which is held by a user for a grinding operation, etc. A speed reduction portion is provided at a front portion of the main body portion for reducing the rotational output of the electric motor by a bevel gear train and outputting it in a perpendicular direction. For this purpose, a spindle on an output side of the speed reduction portion extends perpendicular to a motor shaft. A circular grinding stone (wheel) is attached to the spindle. In general, a substantially semi-circumferential range on a rear side of the grinding stone (a user side) is covered with a cover for preventing powder dust or the like (hereinafter simply referred to as dust), which is generated during a grinding operation, from scattering towards the user.
This cover for the grinding stone can be removed for the convenience of an exchanging operation, etc., as disclosed, for example, in a patent document listed below and can change its position by rotating about an axis of the spindle within an appropriate range in consideration of the working postures of a user, etc. The positional change of this grinding stone cover can be made by loosening fixing screws, etc.
However, this kind of grinding stone cover has accompanied the following problems. As described above, because it is constructed to enable the position of the grinding stone to change about an axis of the spindle to an arbitrary position by loosening a fixing screw, a problem may be caused that cutting chips scatter towards a user if the position is adjusted, when it is opened toward the user at a large angle, and therefore, the construction for enabling the position to be changed to an arbitrary position (a position adjustment function) may rather impair the usability from a viewpoint of prevention of dust from scattering.
Further, if the tightening of the fixing screw after the positional adjustment is weak, the grinding stone cover may, for example, contact the other parts so that the position may be largely displaced in an opening direction, resulting to bring it into a condition so that the a dust scattering prevention function is impaired in some cases.
Accordingly, it is an object of the present invention to enable a dust scattering prevention function to be reliably executed without substantially impairing a position adjustment function of a grinding cover.
Therefore, the present invention provides a stopper device, which has a construction as defined in each of the claims.
According to the stopper device defined in claim 1, the grinding stone cover is supported on the gear housing such that the position can be changed about the axis of the spindle, and therefore, by adjusting the position to a most suitable position in accordance with a mode of operation, etc., it is possible to prevent dusts from scattering towards a user while improving the efficiency of operation. Further, because the position changeable range of the grinding stone cover in the rotational direction of the grinding stone is restricted to a predetermined range by the stopper device, the user may not adjust the position by mistake to a position wherein the dust scattering prevention function may be substantially impaired, and even in the case that the grinding stone cover has contacted the other parts, the grinding stone cover may not accidentally move to a position where the dust scattering prevention function may be substantially impaired.
According to the stopper device as defined in claim 2, by positioning the edge portion of the grinding stone cover at the reference position orthogonal to the body length in a plan view, it is possible to most effectively prevent the dust from scattering towards user while it is possible to ensure the workability, for example, by exposing half the circumferential region on the front side of the grinding stone. A sufficiently practical position adjustable range can be ensured without substantially impairing the dust scattering prevention function by restricting a position adjustable range (opening angle θ from the reference position) from the reference position in the rotational direction of the grinding stone to an angle of 60 degrees (θ=60°).
According to the stopper device defined in claim 3, the position adjustable range can securely be restricted by bringing the stopper protrusion portion in to abutment to the stopper abutting portion on the gear housing side.
According to the stopper device defined in claim 4, the position adjustable range in the rotational direction of the grinding stone is restricted at a predetermined position through abutment of the fixing screw tightening portion of the mounting band portion of the grinding stone cover to the stopper abutting portion on the gear housing side, thereby enabling to reliably ensure the dust scattering prevention function of the grinding stone cover while the operability in accordance with the mode of operation can be ensured.
Further, because the stopper abutting portion is constructed such that it can be mounted by together tightening by means of the screw for mounting the gear housing to the main body portion, the stopper abutting portion can be easily post-mounted so that the stopper device can be widely applied to a grinder already in use by post-mounting.
According to the stopper device defined in claim 5, the displacement of the stopper projection in the spindle axis direction can be more reliably restricted. Therefore, the stopper projection is prevented from being removed in the spindle axis direction from the stopper abutting portion due to the impact applied when the stopper projection abuts the stopper abutting portion, so that the opening angle of the grinding stone cover from the reference position can be further reliably restricted.
[
[
[
[
[
[
[
[
[
[
[
Next, embodiments of the present invention will be described with reference to
The grinder 1 includes a main body portion 3 and a speed reduction gear portion 4. The main body portion 3 includes a main body housing 5 having a substantially cylindrical configuration. An electric motor 2 serving as a power source is received within the main body housing 5. The main body housing 5 and the main body portion 3 also serve as a grip portion having such a thickness that allows a user to easily hold it. The user may be positioned on a rear side of the main body portion 3 to hold the main body portion 3. A main switch 6 of a slide operation type is disposed on a side portion of the main body portion 3. The electric motor 2 starts when the main switch 6 is slidably operated with a fingertip of a hand holding the main body portion 3.
The speed reduction gear portion 4 is provided at a front portion of the main body portion 3. The rotational output of the electric motor 2 is reduced by the speed reduction gear portion 4 and is then outputted to a spindle 7. The speed reduction gear portion 4 is configured to have a bevel gear train within a gear housing 8. Therefore, the rotational axis of the spindle 7 is orthogonal to the rotational axis of the electric motor 2 (body length direction J) as viewed from the lateral side.
In this specification, the side view means a direction of orienting the side surface of the grinder 1 is to the front side (a direction as shown in
The gear housing 8 has a two-body construction with an upper portion 8a and a lower portion 8b that are respectively connected to a front end portion of the main body housing 5 by means of mounting screws 9-9. The spindle 7 protrudes downwardly from a lower portion of the gear housing 8b, and a circular grinding stone 10 is attached to this protruding portion. The grinding stone 10 rotates in a clockwise direction in the plan view. A substantially semi-circumferential portion of a rear side of this grinding stone 10 (on a user side, right side in
The grinding stone cover 20 includes a cover main body portion 21 for covering the substantially semi-circumferential portion of the rear side of the grinding stone and a mounting band portion 22 that is provided on an upper portion of the cover main body portion 21 and is fixed in a state of being wound around the gear housing 8. The cover main body portion 21 includes a semi-circular part (a semi-circular portion 21c) for covering an upper side of the grinding stone 10 and a part bent in a semi-circular arc configuration (a semi-circular bent portion 21d), which is provided along the circumference of the semi-circular portion 21c in order to shield an outer circumferential side of the grinding stone 10. Both edge portions 21a, 21b of the semi-circular portion 21c are positioned substantially on the same line with each other. Mainly, a region of a rear side half of the grinding stone 10 is covered with the cover main body portion 21 so that powder dust, etc. is prevented from scattering towards the user (rear side).
The grinding stone cover 20 is fixed in a position for covering the rear side of the grinding stone 10 by fixing the mounting band portion 22 to the gear housing 8. As shown in
Reinforcement plates 25, 26 are respectively attached to fixing screw tightening portions 22a, 22b by welding. The reinforcement plate 25 is attached so as to extend between the lower portion of the fixing screw tightening portion 22a and the upper surface of the cover main body portion 21. The reinforcement plate 26 is attached so as to extend between the lower portion of the fixing screw tightening portion 22b and the mounting band portion 22. As the bent condition of both fixing screw tightening portions 22a, 22b towards the outer circumferential side (a condition opposed to each other) is firmly maintained and the tightened condition of the fixing screw 24 is maintained, a mounted condition (wound condition) of the mounting band portion 22 with respect to the gear housing 8 is maintained so that inadvertent loosening is prevented.
A stopper projection 27 is integrally formed with the reinforcement plate 25 disposed on a side of the fixing screw portion 22a. The stopper projection 27 protrudes toward an inner circumferential side of the mounting band portion 22. The function of this stopper projection 27 will be described later.
Further, a removal preventing protrusion 22d for preventing removal from the gear housing lower portion 8b is provided on an inner circumferential surface of the mounting band portion 22. The details of the gear housing lower portion 8b are shown in
Although it is omitted in
The stopper abutting portion 8e is integrally formed with a lower surface of the gear housing lower portion 8b. The stopper abutting portion 8e is provided along the lower surface of the cylindrical portion 8c within such a range that satisfies the following function. The stopper abutting portion 8e and the above stopper projection 27 form a stopper device T1 of the present embodiment.
As shown in
Consequently, although the shielded range of the grinding stone 10 can be adjusted by bringing the grinding stone cover 20 into the state of being rotatable around the axis of the spindle 7 by loosening the fixing screw 24, the adjustable range is restricted within a predetermined range as the stopper projection 27 is abutted to the stopper abutting portion 8e as shown in
More specifically, if the grinding stone cover 20 is rotated by 60 degrees from the reference position S in the rotational direction (counterclockwise direction in
In the opposite direction to the rotational direction of the grinding stone 10, the operation can be conveniently performed because the position can be adjusted within a large angular range as conventionally available, without restriction of the position adjustable range of the grinding stone cover 20 from the reference position S by the stopper projection 27 and the stopper abutting portions 8e. Regarding the positional adjustment performed by rotating the grinding stone cover 20 from the reference position S in a clockwise direction as shown in FIG. 2, it may have little influence with regard to scattering of dust towards the user because it opens in an opposite direction (clockwise direction in
According to the grinding stone cover 20 of the present embodiment constructed as described-above, because the position adjustable range (opening angle θ) from the reference position S with respect to the rotational direction of the grinding stone 10 can be restricted to a maximum angle of 60 degrees, it is possible to prevent the user from accidentally setting the opening angle too large, and therefore, it is possible to prevent dust from scattering towards the user as a result of operation.
Further, even in the case that the cutting chips etc., have scattered and collided against the grinding stone cover 20, the grinding stone cover 20 may not be displaced in accordance with the rotation of the grinding stone 10, if the grinding stone cover 20 is fixed by firmly tightening the fixing screw 24. However, in this case, the mounting band portion 22 of the grinding stone cover 20 may excessively tighten the cylindrical tubular portion 8c of the gear housing 8, and as a result, it may cause adverse effects on a bearing (not shown) that supports the spindle 7. Also, it may be troublesome to loosen or tighten the fixing screw in the case that the grinding stone cover 20 is rotated to a desired angle in accordance with the work.
With respect to this viewpoint, according to the present invention, because the fixing screw is used by appropriately tightening the same, and therefore, even if the grinding stone cover 20 is displaced in the rotational direction due to the impact caused by scattering of cutting chips, further rotation is prevented as the stopper projection 27 abuts the stopper abutting portion 8e at the opening angle θ, which is 60 degrees at the maximum from the reference position S so that cutting chips etc., are prevented from scattering towards the user.
Moreover, the function for restricting the position adjustable range by the stopper projection 27 and the stopper abutting portion 8e may work within the position adjustable range of the grinding stone cover 20 in the rotational direction of the grinding stone, while the position adjustment can be made within the position adjustable range in the opposite direction to the rotational direction of the grinding stone by a large angle as conventionally available, and therefore, the above operation and effects can be obtained without imparing the position adjustment function of the grinding stone cover 20 even in the case that a diamond wheel is mounted instead of the grinding stone to form grooves on, for example, concrete.
Various modifications may be made to the above described embodiment. For example, it exemplified the construction in which the stopper projection 27 is provided integrally with the reinforcement plate 25 for reinforcing the fixing screw tightening portion 22a, however, it may be provided to the other portion, such as the circumference of the mounting band portion 22 or the cover main body portion 21. Further, the portion to which the stopper abutting portion 8e is provided is not limited to the above-exemplified portion and may be provided to the other portion in accordance with the position of the above stopper projection. In short, similar effects can be obtained by providing the stopper projection and the stopper abutting portion in such a manner that the opening angle θ is restricted to have a maximum angle of 60 degrees from the reference position S when the position is adjusted by rotating the grinding stone cover 20 in the rotational direction of the grinding stone.
Further, according to the above-exemplified embodiment, it was exemplified to newly provide the stopper projection 27 and the stopper abutting portion 8e as the stopper device T1, however, the same operation and effects can be obtained by adding only the stopper abutting portion. In
As shown in
The stopper abutting portion 31 is provided in a state of entering the movement path of both fixing screw tightening portions 22a, 22b in accordance with the rotation of the grinding stone cover 30 in the rotational direction of the grinding stone. Therefore, when the position of the shielded range for the grinding stone 10 is adjusted by rotating the grinding stone cover 30 in the rotational direction of the grinding stone, further rotation is prevented as the leading end portion of the fixing screw tightening portion 22a or the fixing screw 24 abuts the stopper abutting portion 31. In the second embodiment as well, the position adjustable range of the grinding stone cover 30 in the rotational direction of the grinding stone is restricted to the opening angle θ that is 60 degrees at the maximum from the reference position S.
As described above, according to the stopper device T2 of the second embodiment, the same operation and effects can be obtained as of the first embodiment only by additionally providing the stopper main body 31a on the side of the gear housing 8, while the grinding stone cover 30 can be used as it remains to have the conventional construction.
Moreover, additional modifications may be made to the above second embodiment.
The stopper projection 41 is provided with a bent leading end side of the fixing screw tightening portion 22a, which is bent further into an L-shape towards the front side with respect to the rotational direction of the grinding stone.
Also with the stopper device T3 according to the third embodiment, in the case that the position about the spindle axis of the grinding stone cover 50 is adjusted by loosening the fixing screw 24, if the edge portion 21a is positioned orthogonal to the body length direction J and is rotated by 60 degrees from the reference position S in the rotational direction of the grinding stone the stopper projection 41 abuts the stopper main body 31a so that further rotation of the grinding stone cover 50 in the rotational direction of the grinding stone is prevented and the position adjustable range of the grinding stone cover 50 is restricted. Consequently, similar to the first and the second embodiments, the user may not set the opening angle of the grinding stone cover 50 too large in the rotational direction of the grinding stone, and therefore, dust is prevented from scattering towards the user.
Furthermore, even in the case that the grinding stone cover 50 is displaced in the rotational direction of the grinding stone by the impact applied when the cutting chips etc., are scattered and collide against the grinding stone cover 5, scattering of cutting chips etc., towards the user may be prevented because it is possible to prevent further rotation through abutment of the stopper projection 41 to the stopper main body 31a at the opening angle θ that is 60 degrees at the maximum from the reference position S.
Moreover, similar to the second embodiment, the restriction function of the position adjustable range by means of the stopper projection 41 and the stopper main body portion 31a, works for the position adjustable range of the grinding stone cover 50 in the rotational direction of the grinding stone, and it is possible to adjust the position by a large open angle as conventionally available for the position adjustable range in an opposite direction to the rotational direction of the grinding stone, and therefore, the above-described operation and effects can be obtained without substantially impairing the position adjustment function of the grinding stone cover 50.
Also, the bent portion 40a is provided on an upper portion of the stopper fitting 40 of the third embodiment. The bent portion 40a extends along over the upper side of the stopper main body 31a. With the bent portion 40a, the upward displacement of the stopper projection 41 abutted to the stopper main portion 31a is restricted so that its removal is prevented, and therefore, the position adjustable range restricting function of the stopper device T3 can be reliably exercised because the abutting condition can be reliably maintained.
The additional modifications may be respectively made to the above-described third embodiment. For example, as shown in
Specifically, the displacement of the stopper projection 27 in the spindle axial direction may be more reliably restricted by the stopper restriction protrusion 28. As a result, it is possible to more reliably prevent the stopper projection 27 from displacing in the spindle axis direction and being removed from the stopper abutting portion 8e due to, for example, the deflection of the member caused by the impact generated when the stopper projection 27 abuts the stopper abutting portion 8e as the grinding stone cover 20 is rotated, and therefore, the opening angle θ of the grinding stone cover 20 may be more reliably restricted since the abutting condition of the stopper projection 27 to the stopper abutting portion 8e is reliably maintained.
The stopper restricting protrusion 28 is not limited to be applied to the first embodiment but can also be applied to the second and the third embodiments. By applying the stopper restriction protrusion 28 to the third embodiment, the abutting condition of the stopper projection 41 to the stopper fitting 40 can be more reliably maintained by means of the stopper restricting protrusion 28 in addition to the bent portion 40a.
Also, it may be constructed such that the mounting band portion 22 and the grinding stone cover 20 are rotatably supported about the spindle 7 within a predetermined angle range are prevented from displacing in the spindle axis direction by providing a single removal preventing protrusion, which continuously extends along the entire circumference of the inner circumferential surface of the mounting band portion 2, and inserting it along the inside of the removal preventing recess 8d of the gear housing lower portion 8b. In this case, a portion of the removal preventing protrusion proximal to the stopper projection 27, which continuously extends along the inner circumferential surface of the mounting band portion 22, has the same function as the stopper restricting protrusion 28.
Further, for example, for the stopper devices T1, T2, T3, there have been respectively exemplified the constructions in which the position adjustable ranges of the grinding stone covers 20, 30, 50 in the rotational direction of the grinding stone from the reference position S are restricted to the opening angle θ that is about 60 degrees at the maximum, however, the opening angle θ can be arbitrary determined to, for example, an angle of around 50 degrees or around 70 degrees in accordance with the scattering condition of the dust or the like. Moreover, the stopper device can be set so that the position can adjusted only in an opposite direction to the rotational direction of the grinding stone by setting the position adjustable range in the rotational direction of the grinding stone to 0 degree (reference position S) from the reference position S.
Also, there has been exemplified a relatively small grinder with the main body housing 5 that also serves as a grip portion, however, it is possible to similarly apply to a grinding stone cover for a relatively large grinder that has a separate dedicated grip portion on a rear portion of a main body housing.
Number | Date | Country | Kind |
---|---|---|---|
2007-273733 | Oct 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/068476 | 10/10/2008 | WO | 00 | 4/13/2010 |