This application is a National Phase Entry of International Application No. PCT/EP2012/056245, filed on Apr. 5, 2012, which claims priority to French Patent Application Serial No. 1101020, filed on Apr. 5, 2011, both of which are incorporated by reference herein.
The present invention relates to a stopper consisting of at least two parts, including a sliding plug translatable relative to a base between a plugging position and an open position, in which the plug remains secured to the base and forms a spout with several orifices.
Stoppers that perform plugging through a sliding movement without separation of a plug relative to a tubular base have found favor with consumers for some time now, in particular to meet traveling needs when no glass is available to drink, the plug being configured to be able to be taken in the mouth with proven ergonomics guaranteeing great simplicity of use. Among these stoppers, some have multiple distribution holes at the plug taken into the mouth, to allow a flow of several jets, like a shower. This particular arrangement allows a greater mixture of liquid and air than a flow through a single hole, and thereby provides increased consumption comfort for certain beverages, which amounts to a feeling of freshness and pleasing flavors.
Stoppers of this type, however, have an increased risk of splashing upon plugging. In fact, to plug the stopper device, the consumer presses on the plug, which slides until it reaches its plugging position. On its trajectory, the plug passes through a transitional intermediate position docked alongside the base, from which position a sealed sliding contact is established between the plug and the base as far as the final plugging position. If, when that docked position is reached, liquid is still in the portion of the plug situated above that sealed contact, that liquid trapped between the seal and the spout is, in the continuation of the plugging travel, pushed back toward the distribution holes through a relative movement of the parts, the tubular spout of the base acting as a sort of piston sliding inside the plug. The distribution holes at that time form an equal number of acceleration nozzles for the liquid, which is ejected toward the outside. This risk, which is very detrimental for consumers, who may become stained with the ejected liquid, was identified in document WO201046566, which proposes to give the distribution holes an outwardly flared shape. This solution proves effective when the thickness of the wall of the plug passed through by the holes, which defines the length of those holes, is sufficient. A need nevertheless remains in certain configurations, in particular when the beverage contained in the container has a high surface tension and tends not to flow back quickly toward the container in the phase immediately preceding plugging.
In document U.S. Pat. No. 3,439,842, a two-part stopper of the preceding type is also described, made up of a base including a planar wall from which a tubular spout protrudes forming a passage orifice for the liquid, and a plug enveloping the tubular spout. This plug includes an outer tubular shell and a bottom from which protrudes, toward the base, a sealing skirt inserted, in a plugging position, in the tubular spout. The bottom of the plug further has multiple distribution holes with a small section. The tubular spout of the base is provided with spurs surrounding the passage orifice and designed, in the plugging position, to be placed in the distribution holes. The plugging of the plug may be hindered by the presence of the spurs, if the latter are not situated correctly across from the distribution holes. The consumer risks pressing firmly on the plug to obtain plugging thereof while rotating the plug to seek the alignment of the spurs and distribution holes. At the time when that alignment is obtained, the plugging is done even more quickly if the consumer presses firmly on the plug. At the end of plugging, the lower portion of the outer tubular shell of the plug abuts abruptly over its entire circumference against a planar wall of the base. An unprepared consumer, in particular a child, then risks pinching his fingers (or even lips) between the plug and the base. Furthermore, these plugging kinematics lend themselves to liquid ejections through the distribution holes. This ejection risk is still further increased by the shape of the distribution holes, which have a section that narrows in the direction of the flow, favoring an acceleration of the liquid by Venturi effect. The aforementioned plugging difficulties have a corollary during assembly, and lead to a high defect and discard rate if no precautions are taken to present the parts at a predetermined angle before they are engaged. Aside from the assembly faults recognized due to the lack of alignment between the plug and the base, there is also a risk of the contact surface between the plug and the base, which becomes visible upon opening, being marked by the contact. The design of the stopper is also not completely satisfactory in terms of the chains of dimensions, the surfaces of the plug and the base that abut to define the plugging position being relatively far from those defining the sealing.
In document DE 10 2004 055 338, a stopper is described including a tubular spout to be fastened to the neck of the container, the spout being provided with a central well with which a plug translatable relative to the spout cooperates to plug or free the passage formed by the central well. The plug is provided with flow holes distributed on its periphery so as to allow, in the open position, the passage of the liquid from the inside of the container through the well and the flow holes toward the outside. The spout is provided, on its periphery, with tabs protruding radially and axially. These tabs constitute end-of-travel stops for the plugs in the plugging position, an annular retention volume being preserved in a position between the plug and the spout. This volume is intended to prevent an ejection of liquid upon closing. However, it has been observed that if the liquid trapped in the retention volume does not escape violently during plugging, that liquid nevertheless risks escaping sooner or later after plugging through the flow holes provided in the plug.
The invention aims to resolve all or some of the drawbacks of the state of the art identified above. To that end, according to a first aspect of the invention, proposed is a stopper device to be secured to a container neck intended for a liquid, the stopper device including:
As the plugging end-of-travel stop is made in a space not accessible to consumers, any risk of pinching at the stop is eliminated. As this confined space is also not visible at the opening, in the distribution position, no region marked by the contact between parts is exposed. The small volume of liquid found, during the plugging phase is prevented from flowing back into the container plugged by the plugging device, and can remain in the annular retention volume without any particular risk of abrupt ejection. Even though the distribution holes constitute passageways through which the liquid can flow, that flow, if it occurs despite the surface tension and induced adherence, will be done with no speed.
The radial ribs increase the surfaces on which the liquid can fix itself in the annular retention volume, which is particularly suitable for a sugary beverage or a beverage containing surface agents increasing the adhesion to the surfaces. According to one embodiment, the tubular spout includes an outer tubular guide wall on which the plug slides between the plugging and distribution positions, an inner tubular passage wall delimiting the passage orifice and which the sealing skirt penetrates to plug the passage orifice by annular contact with the inner passage wall, and an annular connecting wall extending radially from the tubular outer guide wall to the tubular inner passage wall, the ribs forming a stop abutting axially against the annular connecting wall. Preferably, the ribs have an axial dimension that is small near the reference axis and increases moving radially away from the reference axis.
For satisfactory guiding of the plug relative to the spout over the entire course between the distribution and plugging positions, it is possible to provide that the outer tubular shell of the plug has at least one annular guide shank protruding radially toward the spout and in sliding contact with a cylindrical guide surface of the tubular spout between the plugging and distribution positions. It is also possible to provide that the tubular spout has at least one annular guide shank protruding radially toward the outer tubular shell of the plug and in sliding contact with a cylindrical guide surface of the outer tubular shell of the plug between the plugging and distribution positions. According to one preferred embodiment, the tubular spout has two annular guide shanks situated axially on either side of the annular edge of the outer tubular shell of the plug.
To avoid end-of-travel impacts upon plugging and further decrease the risks of splashing, it is possible to provide that the device does not include means for snapping in the plugging position. To minimize the acceleration of the plug at the beginning of the plugging travel, and thus still further limit the risks of splashes, it is possible to provide that the device does not include means for snapping in the distribution position.
According to one embodiment, the distribution holes each have a smaller section, the sum of the smallest sections of the distribution holes being substantially equal, to within 20%, to a smaller passage section defined between the sealing skirt of the plug and the tubular spout in the distribution position. A compromise is thus found between a maximum flow rate for consumption and the search for a small volume of liquid captured during the planning phase. To still further limit the captured volume of liquid, the sum of the smallest sections of the distribution holes will be made smaller than the smallest passage section defined between the sealing skirt of the plug and the tubular spout in the distribution position.
Preferably, the plug is free to rotate relative to the spout about the reference axis both in the plugging position and the distribution position and in any intermediate position. There is therefore no angular indexing of the plug relative to the spout, which considerably simplifies assembly. Preferably, the tubular spout is an integral part of the base having raised portions for fastening to the container neck. Preferably, the outer tubular shell includes an end-of-travel distribution stop cooperating with the tubular spout to prevent the plug from separating from the tubular spout. Any risk of the plug being absorbed by the consumer is thus avoided. According to one preferred embodiment, the plug includes several distribution holes distributed on the periphery of the skirt.
According to another aspect of the invention, the invention relates to a plugging device to be secured to a container neck intended to contain a liquid, the plugging device including:
Other features and advantages of the invention will emerge from reading the following description, in reference to the appended figures, which illustrate:
For greater clarity, the identical or similar elements are identified using identical reference signs in all of the figures.
The stopper device shown in the figures is made up of two parts, i.e., a base 10 to be fastened on the neck of a container (not shown) and a plug 12. Optionally, a cover may be provided protecting against dust, which covers at least the plug 12. This optional cover is not shown here, as it is not useful to understand the invention.
The base 10, shown in side view in
The plug 12, shown in detail in
The bottom 44 of the plug is provided with a sealing skirt 52 protruding toward the spout 18. This sealing skirt 52 has a general shape of revolution about the reference axis 100, and preferably cylindrical or slightly tapered flared toward the spout, to penetrate the passage orifice 24 and plug the latter when the plug goes from the distribution position of
The bottom 44 of the plug also has radial ribs 56 protruding from the bottom and positioned between the distribution holes 54. These ribs 56 have a small axial dimension near the geometric reference axis 100, and increasing moving away from the geometric reference axis 100. The bottom 44 also has, in the space not occupied by the ribs 56 and outside the distribution holes 54, a planar surface turned toward the spout 18 and perpendicular to the ribs 56.
The plugging device operates as follows. In the distribution position of
To plug the stopper device, the consumer presses on the plug 12, which begins to slide until it reaches the plugging position of
The position of
In the position of
The ribs 56 constitute facets on which the liquid may adhere, such that the small volume of liquid caught in the retention volume does not risk escaping through the distribution holes 54. It should be noted that in order to limit the initial acceleration of the plug 12 at the beginning of the plugging travel, i.e., the moment when the position of
Naturally, various alternatives may be considered. Some of the ribs may be omitted or their shape may be modified if the retention of the liquid by adhesion on the walls of the ribs is not essential in a given application, for example if the interfacial tension between the considered beverage and the walls of the ribs is not sufficient for a noticeable effect. In this case, the abutment may be formed by an annular shoulder of the bottom, or preferably by spacers—i.e., ribs with a small radial length—distributed on the circumference of the bottom. It is also possible to consider having the abutment be made by an annular portion not protruding from the bottom serving as a seat, on which ribs made on the annular connecting wall of the spout bear. Irrespective of the selected solution, it is necessary to account for the rotational freedom of the plug relative to the spout. It is also preferably necessary to distribute the contact between the stop and the counter-stop seat on the circumference of the device, to avoid misalignment of the plug relative to the spout. It is lastly preferably necessary to limit the quantity of material used. To meet all of these constraints, and in particular inasmuch as one of the surfaces of the abutment, on the spout side or plug side, must protrude toward the other part to form the retention volume, it is of interest to provide that the protruding portion is made up of individual elements distributed on the circumference of the device, and bearing on the other part against an annular seat obtained without adding material. The base and the plug are preferably both made from plastic obtained by injection molding.
Number | Date | Country | Kind |
---|---|---|---|
11 01020 | Apr 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/056245 | 4/5/2012 | WO | 00 | 3/26/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/136746 | 10/11/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3439842 | Stull | Apr 1969 | A |
3834596 | Brady | Sep 1974 | A |
4826055 | Stull | May 1989 | A |
5104008 | Crisci | Apr 1992 | A |
5472120 | Stebick et al. | Dec 1995 | A |
5975369 | Yurkewicz et al. | Nov 1999 | A |
6073809 | Long, Jr. | Jun 2000 | A |
6095375 | Adams et al. | Aug 2000 | A |
6257463 | De Polo | Jul 2001 | B1 |
6325226 | Krautkramer | Dec 2001 | B1 |
6450357 | Krautkramer et al. | Sep 2002 | B1 |
D480305 | Nusbaum et al. | Oct 2003 | S |
6874656 | Rohr et al. | Apr 2005 | B2 |
6874664 | Montgomery | Apr 2005 | B1 |
7036683 | Dubach | May 2006 | B2 |
7077278 | Dubach | Jul 2006 | B2 |
7077294 | Nusbaum et al. | Jul 2006 | B2 |
D556575 | Nusbaum et al. | Dec 2007 | S |
RE40003 | Bennett et al. | Jan 2008 | E |
7611025 | Nusbaum et al. | Nov 2009 | B2 |
D623517 | Pechinot | Sep 2010 | S |
8231018 | Gassner | Jul 2012 | B2 |
20080023502 | Knes | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
1168642 | Oct 1969 | GB |
WO-2010046566 | Apr 2010 | WO |
WO-2010046568 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20140197126 A1 | Jul 2014 | US |