This application is related to commonly assigned, U.S. Pat. No. 7,172,646, having a filing date of Apr. 15, 2003 and the title “Reactive Liquid Based Gas Storage And Delivery Systems” and commonly assigned, copending application U.S. patent application Ser. No. 10/867,068, having a filing date of Jun. 14, 2004 and the title, “Liquid Media Containing Lewis Acidic Reactive Compounds For Storage And Delivery Of Lewis Basic Gases”, the subject matter of which are hereby incorporated by reference.
Many processes in the semiconductor industry require a reliable source of process gases for a wide variety of applications. Often these gases are stored in cylinders or vessels and then delivered to the process under controlled conditions from the cylinder. The semiconductor manufacturing industry, for example, uses a number of hazardous specialty gases such as phosphine, arsine, and boron-trifluoride for doping, etching, and thin-film deposition. These gases pose significant safety and environmental challenges due to their high toxicity and pyrophoricity (spontaneous flammability in air). In addition to the toxicity factor, many of these gases are compressed and liquefied for storage in cylinders under high pressure. Storage of toxic gases under high pressure in metal cylinders is often unacceptable because of the possibility of developing a leak or catastrophic rupture of the cylinder.
Low pressure storage and delivery systems have been developed which provide for adsorption of these gases onto a solid support. Storage and delivery systems of gases sorbed onib solid sorbents are not without their problems. They suffer from poor capacity and delivery limitations, poor thermal conductivity, and so forth.
The following patents and articles are illustrative of low pressure, low flow rate gas storage and delivery systems.
U.S. Pat. No. 4,744,221 discloses the adsorption of AsH3 onto a zeolite. When desired, at least a portion of the AsH3 is released from the delivery system by heating the zeolite to a temperature of not greater than about 175° C. Because a substantial amount of AsH3 in the container is bound to the zeolite, the effects of an unintended release due to rupture or failure are minimized relative to pressurized containers.
U.S. Pat. No. 5,518,528 discloses delivery systems based on physical sorbents for storing and delivering hydride, halide, and organometallic Group V gaseous compounds at sub-atmospheric pressures. Gas is desorbed by dispensing it to a process or apparatus operating at lower pressure.
U.S. Pat. No. 5,917,140 discloses a storage and delivery apparatus for dispensing a sorbable fluid from a solid-phase sorbent with enhanced heat transfer means incorporating radially extending arms each of which abuts and is secured in heat transfer relationship with the wall of the vessel.
WO/0211860 discloses a system for storage and delivery of a sorbate fluid in which the fluid is retained on a sorbent medium and desorption of the fluid from the medium is facilitated by inputting energy to the medium. Methods of energy input include thermal energy, photonic energy, particle bombardment, mechanical energy, and application of chemical potential differential to the sorbate fluid.
U.S. Pat. No. 6,101,816 discloses a fluid storage and dispensing system for a liquid whose vapor is to be dispensed. Associated with the system is a fluid flow port and fluid dispensing assembly associated with the port. The assembly comprises a fluid pressure regulator and a flow control valve. The arrangement is such that the gas from within the vessel flows through the regulator first prior to flow through the flow control element.
The present invention is directed to improvements in storage and delivery systems that allow for rapid fill and delivery of gases reversibly stored in a nonvolatile liquid medium and improvements in delivery and purity of the delivered gas. The low pressure storage and delivery system for gas which comprises:
Significant advantages can be achieved by effecting storage and delivery of Lewis basic or Lewis acidic gases in reactive liquids or liquid media containing a reactive compound of opposing Lewis acidity or basicity. These systems are comprised of a container of a reactive liquid medium that reacts with the gas to be stored. These systems have the following attributes:
It has been found that storage and delivery systems based upon the concept of reacting Lewis basic and Lewis acidic gases in a liquid medium of opposite acidity or basicity present unique problems when compared to those low pressure storage and delivery systems employing solid absorbents or solid adsorbents. One of the primary problems is that of increasing the rate at which a storage and delivery system containing a reactive liquid medium, e.g., an ionic liquid, can be filled with gas. The term “reactive liquid medium” includes reactive liquids, solutions, dispersions, and suspensions. Another problem is that of increasing the rate of delivery of the gas. Other problems relate to increasing the purity of the gas delivered from the storage and delivery system and, during delivery, preventing liquid from contaminating the gas delivered from the storage and delivery systems.
To facilitate an understanding of the storage and delivery systems, reference is made to the drawings. (Identical numbers have been used in the figures to represent identical parts in the system apparatus.)
As mentioned one of the problems in filling the storage and delivery system with a reactive gas is in the lengthy time required to fill container 4. It can be limited by the mass transfer (i.e., diffusion) rate of gas 8 within the reactive liquid medium 6. Because this mass transfer process can be slow, several days or even weeks may be required to fill the container. To overcome mass transfer limitations, energy is either added to and/or removed from the liquid during the gas filling process. By effecting an energy transfer, one increases the mass transfer rate via a convective motion within the liquid and/or by increasing the gas-liquid interfacial area.
One method for enhancing energy transfer, and therefore fill rate, is described with reference to
To fill container 4 with gas, a source gas purifier 23 may be used. The outlet 24 of the purifier is connected to inlet port 11. Source gas flows into the purifier, out the outlet 24, and into container 4. Purification of the source gas leads to higher purity gas delivered from container 4. Source gas purifier 23 may employ adsorptive purification, absorptive purification, separation based on relative volatility differences, or reactive purification. Source gas purifier 23 is particularly effective when the impurities in the source gas react with or dissolve in the reactive liquid medium. For example, a Lewis acid gas may consist of boron trifluoride (BF3), containing an impurity carbon dioxide (CO2). The purifier may utilize a zeolite that has a higher affinity for CO2 relative to BF3. For example, 5A zeolites or sodium mordenite zeolites may be used. After purification, the BF3 preferably contains less than 1 ppm of CO2 and is charged to container 4.
Container 4 may also include bubble nucleation enhancers 25. The term “bubble nucleation enhancers” is defined as any media which serves to promote nucleation of gas bubbles. Examples of suitable nucleation enhancers include boiling chips or boiling stones, including those consisting of polytetrafluoroethylene (PTFE), microporous carbon, alumina, perforated glass, and porous metals and plastics. The porous frit 22 may also serve as a nucleation enhancer. These nucleation enhancers increase the rate of gas delivery from the container.
It is also possible to effect removal of impurities within container 4 with purification media 26. This purification media can be positioned within reactive liquid medium 6 to remove impurities. Purification media 26 may consist of a physical adsorbent or a chemisorbent. A chemisorbent may be a solid or it may be dissolved in the liquid medium. Examples of physical adsorbents include zeolites and activated carbon.
Container 4 can operate in either a horizontal or a vertical orientation. The liquid level should be chosen such that product gas purifier 9 is positioned above the surface of the liquid.
In
Ionic liquids can act as a reactive liquid, either as a Lewis acid or Lewis base, for effecting reversible reaction with the gas to be stored. These reactive ionic liquids have a cation component and an anion component. The acidity or basicity of the reactive ionic liquids then is governed by the strength of the cation, the anion, or by the combination of the cation and anion. The most common ionic liquids comprise salts of tetraalkylphosphonium, tetraalkylammonium, N-alkylpyridinium or N,N′-dialkylimidazolium cations. Common cations contain C1-18 alkyl groups, and include the ethyl, butyl and hexyl derivatives of N-alkyl-N′-methylimidazolium and N-alkylpyridinium. Other cations include pyridazinium, pyrimidinium, pyrazinium, pyrazolium, triazolium, thiazolium, and oxazolium.
A wide variety of anions can be matched with the cation component of such ionic liquids for achieving Lewis acidity. One type of anion is derived from a metal halide. The halide most often used is chloride although the other halides may also be used. Preferred metals for supplying the anion component, e.g. the metal halide, include copper, aluminum, iron, zinc, tin, antimony, titanium, niobium, tantalum, gallium, and indium. Examples of metal chloride anions are CuCl2−, Cu2Cl3−, AlCl4−, Al2Cl7−, ZnCl3−, ZnCl42−, Zn2Cl5−, FeCl3−, FeCl4−, Fe2Cl7−, TiCl5−, TiCl62−, SnCl5, SnCl62−, etc.
Examples of halide compounds from which Lewis acidic or Lewis basic ionic liquids can be prepared include:
With reference to Lewis basic ionic liquids, which are useful for chemically complexing Lewis acidic gases, the anion or the cation component or both of such ionic liquids can be Lewis basic. In some cases, both the anion and cation are Lewis basic. Examples of Lewis basic anions include carboxylates, fluorinated carboxylates, sulfonates, fluorinated sulfonates, imides, borates, chloride, etc. Common anion forms include BF4−, PF6−, AsF6−, SbF6−, CH3COO−, CF3COO−, CF3SO3−, p-CH3—C6H4SO3−, (CF3SO2)2N−, (NC)2N−, (CF3SO2)3C−, chloride, and F(HF)n−. Other anions include organometallic compounds such as alkylaluminates, alkyl- or arylborates, as well as transition metal species. Preferred anions include BF4−, p-CH3—C6H4SO3−, CF3SO3−, (CF3SO2)2N−, (NC)2N−(CF3SO2)3C−, CH3COO− and CF3COO−.
Nonvolatile covalent liquids containing Lewis acidic or Lewis basic functional groups are also useful as reactive liquids for chemically complexing gases. Such liquids may be discrete organic or organometallic compounds, oligomers, low molecular weight polymers, branched amorphous polymers, natural and synthetic oils, etc.
Examples of reactive liquids bearing Lewis acid functional groups include substituted boranes, borates, aluminums, or alumoxanes; protic acids such as carboxylic and sulfonic acids, and complexes of metals such as titanium, nickel, copper, etc.
Examples of reactive liquids bearing Lewis basic functional groups include ethers, amines, phosphines, ketones, aldehydes, nitriles, thioethers, alcohols, thiols, amides, esters, ureas, carbamates, etc.
Specific examples of reactive covalent liquids include tributylborane, tributyl borate, triethylaluminum, methanesulfonic acid, trifluoromethanesulfonic acid, titanium tetrachioride, tetraethyleneglycol dimethylether, trialkylphosphine, trialkylphosphine oxide, polytetramethyleneglycol, polyester, polycaprolactone, poly(olefin-alt-carbon monoxide), oligomers, polymers or copolymers of acrylates, methacrylates, or acrylonitrile, etc. Often, though, these liquids suffer from excessive volatility at elevated temperatures and are not suited for thermal-mediated evolution. However, they may be suited for pressure-mediated evolution.
Gases delivered from the storage and delivery system 2 as described previously should be at least as pure as the source gas introduced into the container, and preferably the gas delivered would even be more pure than the source gas. However, as gas is introduced into the container, impurities present in the source gas may become concentrated in the gas headspace above the reactive liquid medium. As a result, the gas initially withdrawn from the container can be less pure than the source gas introduced into the container. To increase the purity of the gas delivery from storage and delivery system 2, source gas can be introduced into the container during the fill process in excess of the desired fill capacity of the container, typically in excess of the reactive capacity of the reactive liquid medium. The desired fill capacity is the amount of gas desired in the container at the end of the fill process. Next, the gas is vented from the container to remove any impurities that have concentrated in the headspace. The remaining gas in the container is used as the product gas for delivery.
In addition, the source gas can be purified before it is introduced into the container. The source gas can be purified using adsorptive purification, absorptive purification, separation based on relative volatility differences, or reactive purification. Purification of the source gas is particularly effective when the impurities in the source gas either react with the reactive liquid medium or dissolve in the reactive liquid medium. For example, in a system used to store and deliver BF3, the source BF3 may contain CO2 as an impurity. This impurity may react with or dissolve in suitable reactive liquid media. To remove the CO2 from the source gas, adsorptive purification can be used. In particular, a bed of zeolite adsorbent and/or activated carbon adsorbent can be positioned upstream of the container of the reactive liquid medium. As the source BF3 flows through the zeolite bed, CO2 impurities are removed. The zeolites can be 5A zeolites or sodium mordenite zeolites.
Number | Name | Date | Kind |
---|---|---|---|
1821549 | Hornor et al. | Sep 1931 | A |
4032311 | Bohmrich et al. | Jun 1977 | A |
4483461 | Igarashi | Nov 1984 | A |
4744221 | Knollmueller | May 1988 | A |
4761164 | Pez et al. | Aug 1988 | A |
4788825 | Calupca et al. | Dec 1988 | A |
5409526 | Zheng et al. | Apr 1995 | A |
5518528 | Tom et al. | May 1996 | A |
5917140 | Tom | Jun 1999 | A |
5980599 | Chris et al. | Nov 1999 | A |
6012453 | Tsals et al. | Jan 2000 | A |
6101816 | Wang et al. | Aug 2000 | A |
6132492 | Hultquist et al. | Oct 2000 | A |
6500238 | Brandes et al. | Dec 2002 | B1 |
6557591 | Pearlstein et al. | May 2003 | B2 |
6572688 | Irven et al. | Jun 2003 | B2 |
6932945 | Hertzler | Aug 2005 | B2 |
7160359 | Vincent et al. | Jan 2007 | B2 |
7172646 | Tempel et al. | Feb 2007 | B2 |
7208605 | Davis, Jr. | Apr 2007 | B2 |
20020055242 | Uhlenbrock et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
86203578 | Mar 1987 | CN |
86207903 | Nov 1987 | CN |
1 486 458 | Dec 2004 | EP |
2.011.354 | Feb 1970 | FR |
WO 0211860 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060008392 A1 | Jan 2006 | US |