Flexible plastic bags are widely used for a variety of purposes such as storing food items, either temporarily in the case of packaging snacks or long term in the case of freezer storage. Plastic bags of this type typically include one or more pliable sidewalls made of thermoplastic web material such as polyethylene. The sidewalls are arranged to provide an opening and an interior volume accessible through the opening. To close the opening, the bag may include interlocking closure strips attached about the rim of the opening.
The invention provides an evacuable storage bag for receiving and storing food items in an evacuated condition. During evacuation, air will be directed through the interior volume to exit the bag. Additionally, as air exits the bag, the sidewalls will collapse against each other and against the stored food items.
To facilitate evacuation and remove liquids and juices from the exiting air flow, the bag is provided with a textured portion on an inner surface of the sidewall. The textured portion can include a plurality of pyramid shaped protrusions or projections arranged in an offset pattern and that project into the interior volume from other regions of the inner surface. The pyramid shaped protrusions can be substantially separated from each other on the inner surface by the other regions of the inner surface. The base of each pyramid shaped protrusion may be outlined or delineated by the planar regions. Because of the offset arrangement, the planar regions are not of uniform shape and size but rather can be categorized into at least first regions that are relatively large and open and second regions that are relatively small and closed.
During evacuation, liquids and juices may pool into and may become trapped in the larger first regions while the air itself can be directed through the smaller and narrower second regions. The liquids and juices, or at least a portion thereof, may be retained within the bag. An advantage of the storage bag is that it may assist in maintaining the hydration of stored food items. Another advantage is that it may prevent contamination of valve elements and/or evacuation devices. These and other advantages and features of the invention will become apparent from the following drawings and detailed description of the embodiments.
Referring now to the drawings, wherein like reference numbers refer to like elements, there is illustrated in
The first and second sidewalls 102, 104 are joined together along a first side edge 110, a parallel second side edge 112, and a closed bottom edge 114 that extends perpendicularly between the first and second side edges. The edges of the first and second sidewalls 102, 104 can be joined together by a heat sealing operation. To access the internal volume 106, the portions of the first and second sidewalls 102, 104 extending along an open top edge 116 remain un-joined. Due to the four orthogonal edges, the flexible bag 100 has a generally rectangular shape. However, it will be appreciated that in other embodiments, the bag can have any suitable shape resulting from any number and orientation of sidewalls and edges.
To close the open top edge 116 after food items have been inserted into the bag 100, the bag can include a closure mechanism such as first and second interlocking fastening strips 120, 122. The fastening strips 120, 122 can be made from extruded thermoplastic material and are joined to the bag 100 proximate the open top edge 116. More specifically, the first fastening strip 120 can be joined to the inner surface 108 of the first sidewall 102 and the second fastening strip 122 can be joined to the inner surface 109 of the second sidewall 104. The first and second fastening strips can engage and release with each other to allow for repeated opening and closing of the storage bag. To engage, the fastening strips can be aligned adjacent to each other and pressed together. To release the fastening strips, oppositely directed pulling forces can be applied to the first and second sidewalls proximate the top edge. In other embodiments, it will be appreciated that various other closure mechanisms can be used instead of or in combination with the first and second fastening strips.
To evacuate air trapped in the flexible bag 100 after sealing the open top edge 116, the bag includes a one-way valve element 130, various examples of which will be discussed further below, that is attached to the first sidewall 102 and communicates with the internal volume 106. The one-way valve element 130 is capable of opening to allow entrapped air from the internal volume 106 to escape and closing to prevent the ingress of environmental air into the interior volume. Communication with the internal volume 106 can be accomplished by disposing a hole through the first sidewall 102 and then attaching the valve element 130 over the hole. The valve element 130 can operate in conjunction with a handheld evacuation device 132 that provides a suction force for withdrawing air through the valve element.
To facilitate the evacuation of air from the storage bag, the storage bag 100 can include a textured portion 140 on the inner surface 108, 109 of one or both of the first and second sidewalls 102, 104. The textured portion 140 includes a plurality of raised protrusions 142 or peaks that project into the interior volume 106.
Referring to
For example, presume the location of the open top and closed bottom edges are indicated by arrows 150 and the location of the first and second side edges is indicated by arrows 152. Given the exemplary rectangular bag configuration, the arrows 150, 152 are orthogonal with each other and, for reference, the direction indicated by arrows 150 can be considered vertical while the direction indicated by arrows 152 can be considered horizontal. Because of the offset pattern, the apexes 146 of adjacent protrusions generally do not align in either the vertical direction or in the horizontal direction. In fact, in the illustrated embodiment, the apexes 146 of adjacent protrusions generally align in the direction indicated by arrow 154 that is oriented at an angle with respect to the vertical and horizontal arrows 150, 152.
Between the pyramid shaped protrusions 142 the inner surface 109 of the sidewall 104 provides the otherwise substantially planar regions 160. The planar regions 160 are generally co-planar or parallel with one another. In the illustrated embodiment, the pyramid shaped protrusions 142 are substantially separated from each other on the inner surface 109 by the planar regions 160 such that the planar regions are generally contiguous with one another. Hence, the base of each pyramid shaped protrusion 142 including base edges 144 is outlined or delineated by the planar regions 160 and the shape of the planar regions is provided by the protrusions and their arrangement. In other embodiments, however, some overlap of the pyramid shaped protrusions may be permitted.
Because of the offset pattern of the pyramid shaped protrusions 142, the planar regions 160 do not have a uniform shape and size. Instead, as illustrated, the planar regions 160 can include a first plurality of relative larger regions or areas 162 and a second plurality of relatively smaller regions or areas 164. The larger areas 162 are relatively open or exposed and are typically located where adjacent pyramids are separated by large gaps or distances. The smaller areas 164 are relatively closed in or congested and may take the form of narrow channels located between closely proximate or tightly packed protrusions 142. As an example, the ratio of the surface area of the larger areas 162 to the surface area of the smaller areas 164, as measured in the aggregate, average, or one to one correspondence, can be on the order of about 5:1 to about 10:1.
Referring back to
The protrusions 142 and areas 162, 164 may also provide an additional feature. When the user contacts the evacuation device 132 to the bag 100 in order to remove the air from the bag, the downward pressure of the device on the bag sidewalls may cut off the flow of air to the device. The protrusions may provide a standoff for the downward pressure of the device. Thus, the protrusions may require a greater force or downward pressure by the device before the flow of air is cut off.
The offset pattern of the pyramid shaped protrusions 142 provides an additional utility of the texture portion 140. In many instances, food items such meats or fish that are stored in the interior volume contain liquids or juices. To retain those liquids or juices in the bag during evacuation, the first larger areas 162 and second smaller areas 164 of the planar region can cooperate to pool and trap the liquids in the interior volume. Specifically, as the air is directed through the clearances provided by the planar regions 160, liquids entrained in the air or otherwise can gather or pool together within the larger areas 162 while the evacuating air can continue through the narrower or smaller areas 164 to exit the bag. The entrances to the smaller areas 164 can also block or impede the continued flow of the liquids gathered in the larger areas 162. Thus, the offset pattern of the pyramid shaped protrusions allows air to be evacuated from the bag while retaining liquids and juices and thus can improve the freshness and hydration of the food items while preventing contamination of an evacuation device.
Another embodiment is shown in
The pyramid shaped protrusions need not always be rectangular or even of the same size and shape. Moreover, producing the offset arrangement of the protrusions need not be accomplished by patterning the protrusions on an angle with respect to the open top edge and side edges of the storage bag. For example, referring to
The offset pattern is accomplished by random placement or location of the pyramid shaped protrusions 242 on the inner surface 209. Because of the various sizes and random placement of the protrusions, the planar regions 260 have correspondingly varying shapes and sizes. More particularly, the larger areas 262 and smaller areas 264 have random shapes and surfaces areas, even with respect to each other. However, the textured portion 240 including the larger and smaller areas 262, 264 will generally function to facilitate air direction and retain liquids and juices as described above. In a further variation, the random placement of the pyramid shaped protrusions 242 can be configured so that the smaller areas 264 are concentrated toward the opening of the bag 200 while the larger areas 262 are concentrated toward the bottom. In one embodiment shown in
In other embodiments, the arrangement of the pyramid shaped protrusions can be random in a localized area but can generally repeat over a broader area. Likewise, the protrusions can be a combination of rectangular pyramids, triangular pyramids, and/or other shapes. In other embodiments, the protrusions can have other shapes, such as, the circular protrusions 1042 shown in
The textured pattern having pyramid shaped protrusions can be incorporated in various different style plastic storage bags. For example, illustrated in
Referring to
In another method, the protrusions can be placed on the web by depositing moldable material onto the web 404 in a depositing step 420. For example, a depositing machine 422 suspended above the web 404 can deposit by squirting or by direct placement onto the web deposits of liquefied or molten material that correlate to the pyramid shaped protrusions. The material can solidify providing the pyramid shapes. Furthermore, the material can be the same or different than the material comprising the web. In further embodiments, the depositing machine 422 can be moved perpendicularly with respect to the machine direction 402 to provide the offset pattern of the protrusions. In a further embodiment, the textured portion can be initially provided on or formed into a separate film or web 430 of thermoplastic material that is provided on another roll 432. The second web 430 can be unwound from the roll and attached to the first web 404 by an attachment operation 434.
To finish the plastic bag, the web 404 can be run through a folding operation 440 that folds the web in half to provide the first and second sidewalls. The side edges of the bag can be produced by an edging machine 442. Specifically, the edging machine 442 forms a seal 446 across the web of folded material to form the side edges of the bag and cuts the web into individual bags. In other operations, a device 451 can attach the interlocking fastening strips 452, 454 and a device 455 can attach the valve elements 456.
In those embodiments of the flexible plastic bag that include a one-way valve element for evacuation, the particular valve element used can be selected from any various types of suitable one-way valve elements. For example, referring to
Disposed concentrically into the valve body 510 is a counter-bore 528. The counter-bore 528 extends from the first flange face 520 part way towards the boss face 524. The counter-bore 528 defines a cylindrical bore wall 530. Because it extends only part way toward the boss face 524, the counter-bore 528 may form within the valve body 510 a planar valve seat 532. To establish fluid communication across the valve body 510, there is disposed through the valve seat 532 at least one aperture 534. In fact, in the illustrated embodiment, a plurality of apertures 534 are arranged concentrically and spaced inwardly from the cylindrical bore wall 530.
To cooperatively accommodate the movable disk 512, the disk is inserted into the counter-bore 528. Accordingly, the disk 512 is preferably smaller in diameter than the counter-bore 528 and has a thickness as measured between a first disk face 540 and a second disk face 542 that is substantially less than the length of the counter-bore 528 between the first flange face 520 and the valve seat 532. To retain the disk 512 within the counter-bore 528, there is formed proximate to the first flange face 520 a plurality of radially inward extending fingers 544. The disk 512 can be made from any suitable material such as, for example, a resilient elastomer.
Referring to
To attach the valve element 500 to the first sidewall, referring to
In other embodiments, the one-way valve element can have a different construction. For example, as illustrated in
When a pressure differential is applied across the valve element by, for example, placing the nozzle of an evacuation device adjacent the first sidewall 602 about the valve element, the top layer 614 can be partially displaced from the base layer 612 thereby exposing the aperture 616. Air from the interior volume 606 can pass through the hole 608 and aperture 616 and along the channel formed between the adhesive strips 618 where the removed air enters the evacuation device. When the suction force generated by the evacuation device is removed, the resilient top layer 614 will return to its prior configuration covering and sealing the aperture 616. The valve element 610 may also contain a viscous material such as an oil, grease, or lubricant between the two layers in order to prevent air from reentering the bag. In an embodiment, base layer 612 may also be a rigid sheet material.
Illustrated in
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventor(s) for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor(s) expect skilled artisans to employ such variations as appropriate, and the inventor(s) intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/69156 | 7/3/2008 | WO | 00 | 12/17/2009 |
Number | Date | Country | |
---|---|---|---|
60950279 | Jul 2007 | US |