This invention pertains generally to storage containers and more particularly to flexible and closable storage bags. The invention finds particular applicability in the field of food storage.
Storage bags are commonly used for a variety of purposes such as storing food items. Such storage bags are typically made from a pliable, low cost, thermoplastic material that defines an interior volume into which food items can be inserted. To preserve the inserted food, the storage bag may also include a distinct closing mechanism, such as interlocking fastening strips, for sealing closed an opening through which the interior volume is accessible.
One problem that occurs with the aforementioned storage bags is that latent air may remain trapped within the interior volume after sealing closed the opening. The trapped air may cause spoiling or dehydration of the food items. To remove the trapped air, it is known to provide an aperture disposed through a sidewall of the storage bag that communicates with the interior volume. Latent air can be forced or drawn through the aperture by, for example, applying compressive pressure to the pliable sidewalls or by use of a distinct evacuation device such as a nozzle connected to a vacuum source. To prevent the ingress of the surrounding environmental air back through the aperture and into the interior volume, it is further known to provide a one-valve element that operates to control the flow of air through the aperture. The one-way valve element may be activated in various ways such as, for example, by applying compressive pressure to the flexible sidewalls to force air from the interior volume.
Often, the stored food items contain liquids or juices. During evacuation, the liquids may escape via the aperture or be drawn into and thereby contaminate the valve element. As will be appreciated, the contaminated valve element may result in sanitary issues and may not function properly. Moreover, the liquids or juices may also be drawn through the valve element and into the vacuum source or otherwise ejected into the environment, causing additional sanitary or operational problems. In addition to the sanitary issues, allowing liquids to escape from the interior volume can result in dehydration of enclosed food stuffs.
The invention provides a storage bag configured to separate liquids and juices from air being evacuated from the interior volume via an aperture or a one-way valve element. To accomplish separation of liquids, the bag includes a separation material located so as to substantially cover the aperture and/or valve-element. The separation material may be a non-woven material. The non-woven material may demonstrate hydrophobic or hydrophilic characteristics to assist in separating liquids from the air. Moreover, in various aspects, the non-woven material can be treated with specific substances to improve those hydrophobic or hydrophilic characteristics or the material may be provided as a plurality of overlying layers. During evacuation, air from the interior volume passes through the non-woven material where liquids become retained or are otherwise repelled and returned back to the interior volume.
Thus, an advantage of the invention is that it helps retain liquids in a bag, which further prevents dehydration of enclosed food stuffs and contamination of the surrounding environment. Another advantage is that the invention prevents contamination of a one-way valve element communicating with the interior volume. These and other advantages and features of the invention will become apparent from the detailed description and the accompanying drawings.
Now referring to the drawings, wherein like reference numbers refer to like features, there is illustrated in
The first and second sidewalls can be made from webs of pliable thermoplastic material. Examples of suitable thermoplastic material include polyethylene (PE), high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polypropylene (PP), ethylene vinyl acetate (EVA), nylon, polyester, polyamide, ethylene vinyl alcohol, and can be formed in single or multiple layers. The thermoplastic material can be transparent, translucent, opaque, or tinted. Furthermore, the material used for the sidewalls can be a gas impermeable material.
The first and second sidewalls 102, 104 are joined together along a first side edge 110, a parallel second side edge 112, and a closed bottom edge 114 by, for example, a heat sealing operation. To access the interior volume 106, the portions of the first and second sidewalls 102, 104 along the top edges 116 remain un-joined to provide an opening. Due to the four orthogonal edges, the illustrated storage bag 100 has a rectangular shape. However, it will be appreciated in other embodiments that the bag can have any suitable shape resulting from any number of sidewalls and end.
To releasably close the opened top end 116 after insertion of an item for storage, there is attached to the first and second sidewalls 102, 104 parallel to the opened top end respective first and second fastening strips 120, 122. The first and second fastening strips 120, 122 can be formed from extruded, flexible thermoplastic material and extend between the first and second side edges 110, 112. As will be appreciated by those of skill in the art, the first and second fastening strips 120, 122 can engage to form a seal which closes the normally opened top end 116. In other embodiments or in combination with the interlocking fastening strips, other methods such as the use of pressure sensitive or cold seal adhesives, heat sealing, mechanical clamps and twist ties, or cling can be employed to close the opened top end.
To remove latent air from the storage bag 100 after closing the opened top end 116, there is disposed through the first sidewall 102 an aperture 130 that communicates with the interior volume 106. Air can be forced or drawn through the aperture 130 by, for instance, applying a compressive force against the sidewalls 102, 104 or by employing a distinct evacuation device such as a nozzle connected to a vacuum source. To prevent the ingress of environmental air back through the aperture 130, a closure element is provided, such as a one-way valve element 132 to operate in conjunction with the aperture. The one-way valve element 132 is capable of opening to allow entrapped air from the interior volume 106 to exit via the aperture 130 and of closing to block the aperture.
In accordance with the teachings of the invention, to prevent liquids and juices that may result from the stored items from exiting the interior volume through the aperture 130 and/or valve element 132, the storage bag 100 can include a separation material 140 that operates in conjunction with the aperture and/or valve element. In the illustrated embodiment, the separation material 140 can be provided as a non-woven material attached to the inner surface 108 of the first sidewall 102 such that the non-woven overlays and covers the aperture 130 and/or valve element 132. In this position, it will be appreciated that air exhausting from the interior volume 106 must encounter and pass through the non-woven material 140 to exit the storage bag 100 at which time the non-woven material will function to completely or partially remove or substantially separate liquids entrained in the exhausting air.
To accomplish this, the non-woven material 140 is sufficiently permeable to air while also demonstrating liquid resistant properties such as hydrophobic or hydrophilic characteristics to remove liquids. If the non-woven material demonstrates hydrophobic properties, liquids otherwise entrained in the exhausting air will be removed and returned to the interior volume by the non-woven material. If the non-woven material demonstrated hydrophilic characteristics, liquids entrained in the exhausting air will be absorbed and retained by the non-woven material. In one embodiment, the air permeability of the non-woven material is on the order about five cubic feet per minute while the hydrophobic or hydrophilic properties are such that the non-woven material can withstand a head pressure of about ten mbars.
To achieve the desired air permeability properties, in a first embodiment, the non-woven may be made from fine fibers on the order of 30 microns or less and in a second embodiment, 10 microns or less and in a third embodiment, on the order of between about 2 to 5 microns. Examples of non-woven materials include polypropylene, polyethylene, ethylene copolymers, nylon, or polyester and the non-woven material can be formed by any suitable operation including melt blown, spun bond, hydroentangled, needle punched, batting, dry-laid or wet-laid.
To achieve the desired liquid resistant or retentive properties, it may be advantageous to treat the non-woven material with a low surface energy substance. Examples of such low surface energy substances include those containing fluorine or silicon such as fluoroelastomers, fluoropolymers, flourinated fluids, or silicones such as polydimethylsiloxane. Treatment can be accomplished in any suitable way including, for example, coating the non-woven material with the liquid low energy substance, or by incorporating or impregnating the low energy substance into the fibers of the non-woven material. In those embodiments in which the non-woven material is treated by coating, the low surface energy substance can be applied to one or more surfaces of the non-woven material.
The non-woven material may have any suitable shape and can be attached to the storage bag to cover the aperture and/or valve element in any of various suitable methods. For example, referring to
Another embodiment of a storage bag 200 having first and second side walls designated by reference numerals 202 and 204, respectively, and a separation material 240 for separating liquids from exhausting air is illustrated in
Referring to
Disposed concentrically into the valve body 260 is a counter-bore 278. The counter-bore 278 extends from the first flange face 270 part way towards the boss face 274. The counter-bore 278 defines a cylindrical bore wall 280. Because it extends only part way toward the boss face 274, the counter-bore 278 forms within the valve body 260 a preferably planar valve seat 282. To establish fluid communication across the valve body 260, there is disposed through the valve seat 282 at least one aperture 284. In fact, in the illustrated embodiment, a plurality of apertures 284 are arranged concentrically and spaced inwardly from the cylindrical bore wall 280.
To cooperatively accommodate the movable disk 262, the disk is inserted into the counter-bore 278. Accordingly, the disk 262 is preferably smaller in diameter than the counter-bore 278 and has a thickness as measured between a first disk face 290 and a second disk face 292 that is substantially less than the length of the counter-bore 278 between the first flange face 270 and the valve seat 282. To retain the disk 262 within the counter-bore 278, there is formed proximate to the first flange face 270 a plurality of radially inward extending fingers 294. The disk 262 can be made from any suitable material such as, for example, a resilient elastomer.
Referring to
To attach the valve element 232 to the first sidewall, referring to
Referring to
Specifically, in the illustrated embodiments, the first layer 342 and the second layer 344 are loosely attached to each other by their respective first layer peripheral edge 348 and second layer peripheral edge 346. The joined peripheral edges 346, 348 are also attached to the inner surface 308 of the first sidewall 302 such that the first layer 342 is loosely drawn over and covers the aperture 330 and/or valve element 332 and the second layer 344 overlays and covers the first layer 342. Attachment of the first and second peripheral edges 346, 348 and the inner surface 308 can be accomplished by any suitable method including, for example, adhesives and heat sealing.
Because of the loose attachment between the first and second layers 342, 344, the layers form an expandable and collapsible gap or void 350 therebetween. Due to the location of the first and second layers 342, 344 covering the aperture 330, air exhausting from the interior volume must traverse the void 350 to exit the storage bag. It has been found that liquids from the interior volume 306 have difficulty traversing the void 350 and are thereby discouraged from accessing the aperture 330 and/or valve element 332. Moreover, in those embodiments in which the non-woven material used to make the layers demonstrates hydrophobic and/or hydrophilic properties, providing the non-woven material 340 as a plurality of layers increases, in one embodiment, by multiples, the resistance to liquid flow towards the aperture.
In the embodiments in which non-woven material is treated with a low surface energy substance, the void 350 may additionally be used to trap liquids. For example, if the surfaces of both the first and second layers 342, 344 that are directed toward the interior volume 306 are treated with a low surface energy substance, any liquids that manage to traverse the second layer 344 and enter the void 350 are prevented from accessing the aperture 330 by the treated first layer 342. The liquids thereby remain trapped in the void 350.
In other embodiments of the previously described storage bag, the plurality of layers can include additional layers to the first and second layers. However, the number and thickness of the layers should be selected so that the non-woven material does not adversely impact evacuation of air from the interior volume.
Referring to
In other embodiments, the separation material can be provided as an operable part of a valve element employed for exhausting air from the interior volume. For example, referring to
When the sidewalls 402, 404 of the bag 400 are forcibly compressed together, air from the interior volume 406 will pass through the aperture 430 and through the permeable base layer 440 thereby partially displacing the top layer 434 from the base layer. The air can then pass along the channel formed between the adhesive strips 436 and escape to the environment. It will be appreciated that passing air through the non-woven base layer helps remove liquids from the air. When the force on the sidewalls 402, 404 is released, the resilient top layer 434 will return to its prior configuration adjacent the non-woven base layer 440 thereby covering and sealing the aperture 430. The valve element 432 may also contain a viscous material such as an oil, grease, or lubricant between the two layers in order to prevent air from reentering the bag. In an embodiment, base layer 440 may also be a rigid sheet material.
Illustrated in
Referring to
In operation, air exhausting from the bag through the permeable, non-woven base layer 640 will encounter and be outwardly dispersed by the non-permeable top layer 634. The non-woven material can demonstrate hydrophobic and/or hydrophilic properties to retain liquids in the bag. To allow the exhausting air to escape from between the base and top layers 634, 640, perforations 638 are disposed through the border-like edges of the top layer. In
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/880,784, filed Jun. 29, 2004 now U.S. Pat. No. 7,726,880.
Number | Name | Date | Kind |
---|---|---|---|
2778173 | Taunton | Aug 1951 | A |
2576322 | Waters | Nov 1951 | A |
2778171 | Taunton | Jan 1957 | A |
2870954 | Kulesza | Jan 1959 | A |
3430842 | Gennosuke | Mar 1969 | A |
3468471 | Linder | Sep 1969 | A |
3980226 | Franz | Sep 1976 | A |
4197100 | Hausheer | Apr 1980 | A |
4215725 | Callet et al. | Aug 1980 | A |
4295566 | Vincek | Oct 1981 | A |
4310118 | Kisida et al. | Jan 1982 | A |
4702376 | Pagliaro | Oct 1987 | A |
4715494 | Heitzenrioder et al. | Dec 1987 | A |
4756422 | Kristen | Jul 1988 | A |
5228271 | Wallace | Jul 1993 | A |
5332095 | Wu | Jul 1994 | A |
5354133 | Rapparini | Oct 1994 | A |
RE34929 | Kristen | May 1995 | E |
5450963 | Carson | Sep 1995 | A |
5480030 | Sweeney et al. | Jan 1996 | A |
5515994 | Goglio | May 1996 | A |
5544752 | Cox | Aug 1996 | A |
5584409 | Chemberlen | Dec 1996 | A |
5782266 | Domke | Jul 1998 | A |
5881881 | Carrington | Mar 1999 | A |
5989608 | Mizuno | Nov 1999 | A |
5996800 | Pratt | Dec 1999 | A |
6021624 | Richison et al. | Feb 2000 | A |
6039182 | Light | Mar 2000 | A |
6056439 | Graham | May 2000 | A |
6059457 | Sprehe et al. | May 2000 | A |
6070397 | Bachhuber | Jun 2000 | A |
6070728 | Overby et al. | Jun 2000 | A |
6357915 | Anderson | Mar 2002 | B2 |
6378272 | Archibald et al. | Apr 2002 | B1 |
6575191 | Skeens et al. | Jun 2003 | B2 |
6581641 | Skeens et al. | Jun 2003 | B2 |
6604634 | Su | Aug 2003 | B2 |
6715644 | Wilford | Apr 2004 | B2 |
6799680 | Mak | Oct 2004 | B2 |
6932509 | Shah et al. | Aug 2005 | B2 |
7137738 | Shah et al. | Nov 2006 | B2 |
20030024847 | Malaspina | Feb 2003 | A1 |
20030102245 | Wang | Jun 2003 | A1 |
20030155269 | Lee | Aug 2003 | A1 |
20040000501 | Shah et al. | Jan 2004 | A1 |
20040000502 | Shah et al. | Jan 2004 | A1 |
20040000503 | Shah et al. | Jan 2004 | A1 |
20040007494 | Popeil et al. | Jan 2004 | A1 |
20040050745 | Lee et al. | Mar 2004 | A1 |
20040238397 | Yu et al. | Dec 2004 | A1 |
20050025396 | ErkenBrack | Feb 2005 | A1 |
20050031229 | Tang | Feb 2005 | A1 |
20050036718 | Wu et al. | Feb 2005 | A1 |
20050065007 | Wu et al. | Mar 2005 | A1 |
20050172577 | Oltrogge | Aug 2005 | A1 |
20050205455 | Harrison | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
WO2004002840 | Jan 2004 | WO |
WO2004002841 | Jan 2004 | WO |
WO2004002850 | Jan 2004 | WO |
WO 2005000706 | Jan 2005 | WO |
WO 2005016774 | Feb 2005 | WO |
WO 2005040005 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060110079 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10880784 | Jun 2004 | US |
Child | 11170524 | US |