1. Field of the Invention
This invention relates generally to the field of nonvolatile or flash or EEPROM memory and in particular to a method and apparatus for measuring and displaying the storage capacity of such memory.
2. Description of the Prior Art
Nonvolatile memory, such as FLASH memory and EEPROM, has gained notoriety in the recent decade, namely due to its fast write time characteristics and ability to maintain storage of information even when no power is connected thereto. Nonvolatile memory is now employed in a wide number of applications, such as digital film for digital cameras, as a drive (or mass storage) in personal computers (PCs) or other hosts, hand-held electronic devices such as personal data access (PDAs) and the like.
During manufacturing of nonvolatile memory devices, certain defects within the memory are detected and marked accordingly. Manufacturing defects are inherent in nonvolatile memory devices and other types of defects arise during use of the devices. Other types of defects can and generally result from repeated usage of the device. For example, a nonvolatile memory device is now generally expected to be used or re-written thereto anywhere from thousands to tens of thousands to hundreds of thousands to one million times and thereafter, the device typically becomes unusable due to the number of defective memory locations therein. As nonvolatile memory is utilized, it is written thereto for use in storing information and then it is erased prior to use of the same locations, i.e. re-written. In most applications, nonvolatile memory is organized into blocks and when a write is initiated by a host that is coupled to the memory, generally through a controller device, one or more blocks are written thereto. Prior to re-writing the one or more blocks, the latter need be erased and when a block undergoes anywhere from thousands to tens of thousands to hundreds of thousands to one million or so write and erase operations, it will generally become defective or its ability to store information reliably deteriorates. Thus, the more nonvolatile or flash memory is utilized, the more defects grow.
Additionally, nonvolatile memory has a limited capacity, which is basically, in large part, dependent upon the architecture or design of the nonvolatile memory. When nonvolatile memory devices are employed, data or information written thereto reduces the amount of available storage. The storage capacity of the nonvolatile memory clearly changes as its use changes. For example, initially, notwithstanding manufacturing defects, the storage capacity of the nonvolatile memory is 100% or the memory is completely available for storage. However, as information is stored therein, its storage capacity decreases until such time as when there is no further available locations for storage of information.
A computer system or host can always determine the amount of storage space remaining available for storage within a nonvolatile memory device. It should be noted that nonvolatile memory is intended to refer to any kind of memory, such as flash and EEPROM, that is capable of preserving information even when power is not being applied thereto. The storage capacity of a device, such as a card that includes nonvolatile memory is currently known by a host that is coupled to the nonvolatile memory generally through a controller device, but it is not displayed to the user of the card. Thus, in current nonvolatile systems, information regarding storage capacity is only available within the host and only when the nonvolatile memory device is coupled to the host.
Therefore, the need arises for a method and apparatus to measure and display the storage capacity of nonvolatile or flash memory of nonvolatile memory device(s) and to do so even when the nonvolatile memory device is not coupled to a host.
Briefly, in accordance with one embodiment of the present invention, a memory device is disclosed to include memory organized into blocks, each block having a status associated therewith and all of the blocks of the nonvolatile memory having collectively a capacity status associated therewith and a display for showing the capacity status even when no power is being applied to the display.
Referring now to
The device 16, while not shown in
As noted earlier, a user of the device 16 (not shown in
Each block has associated therewith a status, i.e. ‘used’ or programmed, or ‘free’, which is available or remains to be programmed. A block is generally considered ‘free’ after the nonvolatile memory is initialized and prior to programming thereof with user data, or it can become ‘free’ after the host makes it available for re-use in the file system.
For example, through a predefined command, from the device 16 to the host 12, through the interface 14, the device 16 asks the host 12 of its storage capacity status. The host 12 responds back, at 18, informing the device 16 of storage capacity of the device 16, which is ultimately displayed to a user of the device 16. Alternatively, the host 12 regularly updates the device 16 with capacity status information. For example, following every write operation that modifies the capacity of the device 16, the host 12 updates the device 16 with capacity status information. In fact, the storage capacity information or capacity status information is continuously displayed to a user or alternatively, may be displayed upon request, as will be discussed further herein.
Information generally appears in the form of files from the operating system of a computer, accordingly, the host 12 maintains a file structure for storing and retrieving files in a predefined order vis-á-vis the blocks available for storage within the nonvolatile memory device. That is, a particular file may be stored in a number of blocks and each time the file is updated or revised, there may be other or additional blocks employed for such storage. The host maintains the usage of the blocks but the device 16 does not necessarily do so.
Because the device 16 does not have information regarding the file structure, it cannot readily determine when data or information is obsolete or “deleted” from the nonvolatile memory devices, which are included in the device 16. Thus, the host 12 calculates the storage capacity status and informs the device 16 of the same, at 18, and then, the device 16 displays the storage capacity status.
The host 12 calculates the storage capacity status as the remaining capacity, in percent, of the original capacity or total capacity, i.e. “used” or “free”.
In yet another embodiment display, a light emission diode (LED) is employed showing the capacity status using different color lights. In this case, the device 16 need be provided power by either being plugged into or coupled to the host or otherwise. The LED may be used to indicate storage capacity of the device 16 or health status. In the case of health status, as an example, if the LED shows a red color, this may be indicative of the health status of the device 16 being zero or no spares available for programming and an orange/yellow color may indicate 50% or less availability and a green color may indicate an availability of more than 50%. The colors displayed by the LED are a design choice and can be readily altered to indicate different status.
As to storage capacity status, as an example, a red-colored LED may indicate that the device 16 is full and has no available memory for programming, an orange/yellow-colored LED may be indicative of a capacity of less than 50% and a green-colored LED may be indicative of a capacity of more than 50% remaining for programming. Another example is, a green flashing light can be used to indicate a semi-empty nonvolatile memory, a continuous green light can be used to indicate an empty or free nonvolatile memory and a red light can be used to indicate a full nonvolatile memory. The colors displayed by the LED are a design choice and can be readily altered to indicate different status.
The particular way in which a display is presented is left up to the designer of the device 16, similarly, whether the number of programmed blocks is shown or the number of blocks remaining to be programmed is shown is left up to the designer of the device 16. The display need not show a percentage value indicative of the capacity status, rather, an absolute number may be displayed, such as shown in
It should be noted that capacity status information is displayed even if power is disconnected from the device 16. That is, even if the device 16 is unplugged from the host 12, in
The capacity status information is displayed on a monitor, on a continuous basis, if desired, and in the form of an icon, such as by changing the color of the icon as the capacity is used or by changing the shape of the icon to indicate remaining capacity.
There are a number of ways of implementing displaying capacity status. One way is for the operating system to show such information to a user through a monitor. This is easily accomplished as the host is in a position to always knows, through calculations, such as the one presented above, the capacity status of the nonvolatile memory of a device. Another way is to have the host communicate the capacity status information through the interface 18 to the device 16 for displaying thereof by the device 16 and having the device 16 displaying the same on a nonvolatile display, such as those presented in
Power may be provided to the display in a number of ways understood by those of ordinary skill in the art. Some of these ways include a capacitor coupled to the display for the purpose of providing power. Another way is to use a battery that is either chargeable or non-chargeable to provide power to the display.
Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and scope of the invention.
This application is a continuation-in-part of a previously-filed U.S. patent application Ser. No. 10/927,871, entitled “STATUS OF OVERALL HEALTH OF NONVOLATILE MEMORY”, filed on Aug. 27, 2004 now U.S. Pat. No. 7,464,306 by Martin Ragnar Furuhjelm, the disclosure of which is herein incorporated by reference as though set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
4099069 | Cricchi et al. | Jul 1978 | A |
4130900 | Watanabe | Dec 1978 | A |
4210959 | Wozniak | Jul 1980 | A |
4309627 | Tabata | Jan 1982 | A |
4355376 | Gould | Oct 1982 | A |
4398248 | Hsia et al. | Aug 1983 | A |
4405952 | Slakmon | Sep 1983 | A |
4414627 | Nakamura | Nov 1983 | A |
4450559 | Bond et al. | May 1984 | A |
4456971 | Fukuda et al. | Jun 1984 | A |
4468730 | Dodd et al. | Aug 1984 | A |
4473878 | Zolnowsky et al. | Sep 1984 | A |
4476526 | Dodd | Oct 1984 | A |
4498146 | Martinez | Feb 1985 | A |
4525839 | Nozawa et al. | Jun 1985 | A |
4532590 | Wallach et al. | Jul 1985 | A |
4609833 | Gutterman | Sep 1986 | A |
4616311 | Sato | Oct 1986 | A |
4654847 | Dutton | Mar 1987 | A |
4710871 | Belknap et al. | Dec 1987 | A |
4746998 | Robinson et al. | May 1988 | A |
4748320 | Yorimoto et al. | May 1988 | A |
4757474 | Fukushi et al. | Jul 1988 | A |
4774700 | Satoh et al. | Sep 1988 | A |
4780855 | Iida et al. | Oct 1988 | A |
4788665 | Fukuda et al. | Nov 1988 | A |
4797543 | Watanabe | Jan 1989 | A |
4800520 | Iijima | Jan 1989 | A |
4829169 | Watanabe | May 1989 | A |
4843224 | Ohta et al. | Jun 1989 | A |
4896262 | Wayama et al. | Jan 1990 | A |
4914529 | Bonke | Apr 1990 | A |
4920518 | Nakamura et al. | Apr 1990 | A |
4924331 | Robinson et al. | May 1990 | A |
4943745 | Watanabe et al. | Jul 1990 | A |
4953122 | Williams | Aug 1990 | A |
4970642 | Yamamura | Nov 1990 | A |
4970727 | Miyawaki et al. | Nov 1990 | A |
5070474 | Tuma et al. | Dec 1991 | A |
5093785 | Iijima | Mar 1992 | A |
5168465 | Harari | Dec 1992 | A |
5198380 | Harari | Mar 1993 | A |
5200959 | Gross et al. | Apr 1993 | A |
5218695 | Noveck et al. | Jun 1993 | A |
5220518 | Haq | Jun 1993 | A |
5226168 | Kobayashi et al. | Jul 1993 | A |
5227714 | Lou | Jul 1993 | A |
5253351 | Yamamoto et al. | Oct 1993 | A |
5267218 | Elbert | Nov 1993 | A |
5268318 | Harari | Dec 1993 | A |
5268870 | Harari | Dec 1993 | A |
5270979 | Harari et al. | Dec 1993 | A |
5293560 | Harari | Mar 1994 | A |
5297148 | Harari et al. | Mar 1994 | A |
5303198 | Adachi et al. | Apr 1994 | A |
5305276 | Uenoyama | Apr 1994 | A |
5305278 | Inoue | Apr 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5315558 | Hag | May 1994 | A |
5329491 | Brown et al. | Jul 1994 | A |
5337275 | Garner | Aug 1994 | A |
5341330 | Wells et al. | Aug 1994 | A |
5341339 | Wells | Aug 1994 | A |
5341341 | Fukazo | Aug 1994 | A |
5353256 | Fandrich et al. | Oct 1994 | A |
5357475 | Hasbun et al. | Oct 1994 | A |
5359569 | Fujita et al. | Oct 1994 | A |
5365127 | Manley | Nov 1994 | A |
5369615 | Harari et al. | Nov 1994 | A |
5371702 | Nakai et al. | Dec 1994 | A |
5381539 | Yanai et al. | Jan 1995 | A |
5382839 | Shinohara | Jan 1995 | A |
5384743 | Rouy | Jan 1995 | A |
5388083 | Assar et al. | Feb 1995 | A |
5396468 | Harari et al. | Mar 1995 | A |
5404485 | Ban | Apr 1995 | A |
5406527 | Honma | Apr 1995 | A |
5418752 | Harari et al. | May 1995 | A |
5422842 | Cernea et al. | Jun 1995 | A |
5422856 | Sasaki et al. | Jun 1995 | A |
5428621 | Mehrotra et al. | Jun 1995 | A |
5430682 | Ishikawa et al. | Jul 1995 | A |
5430859 | Norman et al. | Jul 1995 | A |
5431330 | Wieres | Jul 1995 | A |
5434825 | Harari | Jul 1995 | A |
5438573 | Mangan et al. | Aug 1995 | A |
5465235 | Miyamoto | Nov 1995 | A |
5465338 | Clay | Nov 1995 | A |
5471478 | Mangan et al. | Nov 1995 | A |
5473765 | Gibbons et al. | Dec 1995 | A |
5479638 | Assar et al. | Dec 1995 | A |
5485595 | Assar et al. | Jan 1996 | A |
5490117 | Oda et al. | Feb 1996 | A |
5495442 | Cernea et al. | Feb 1996 | A |
5504760 | Harari et al. | Apr 1996 | A |
5508971 | Cernea et al. | Apr 1996 | A |
5513138 | Manabe et al. | Apr 1996 | A |
5515333 | Fujita et al. | May 1996 | A |
5519847 | Fandrich et al. | May 1996 | A |
5523980 | Sakui et al. | Jun 1996 | A |
5524230 | Sakaue et al. | Jun 1996 | A |
5530673 | Tobita et al. | Jun 1996 | A |
5530828 | Kaki et al. | Jun 1996 | A |
5530938 | Akasaka et al. | Jun 1996 | A |
5532962 | Auclair et al. | Jul 1996 | A |
5532964 | Cernea et al. | Jul 1996 | A |
5534456 | Yuan et al. | Jul 1996 | A |
5535328 | Harari et al. | Jul 1996 | A |
5541551 | Brehner et al. | Jul 1996 | A |
5544118 | Harari | Aug 1996 | A |
5544356 | Robinson et al. | Aug 1996 | A |
5552698 | Tai et al. | Sep 1996 | A |
5554553 | Harari | Sep 1996 | A |
5563825 | Cernea et al. | Oct 1996 | A |
5566314 | DeMarco et al. | Oct 1996 | A |
5568439 | Harari | Oct 1996 | A |
5572466 | Sukegawa | Nov 1996 | A |
5579502 | Konishi et al. | Nov 1996 | A |
5581723 | Hasbun et al. | Dec 1996 | A |
5583812 | Harari | Dec 1996 | A |
5592415 | Kato et al. | Jan 1997 | A |
5592420 | Cernea et al. | Jan 1997 | A |
5596526 | Assar et al. | Jan 1997 | A |
5598370 | Niisima et al. | Jan 1997 | A |
5602987 | Harari et al. | Feb 1997 | A |
5603001 | Sukegawa et al. | Feb 1997 | A |
5606660 | Estakhri et al. | Feb 1997 | A |
5611067 | Okamoto et al. | Mar 1997 | A |
5640528 | Harney et al. | Jun 1997 | A |
5642312 | Harari | Jun 1997 | A |
5648929 | Miyamoto | Jul 1997 | A |
5663901 | Wallace et al. | Sep 1997 | A |
5693570 | Cernea et al. | Dec 1997 | A |
5712819 | Harari | Jan 1998 | A |
5719808 | Harari et al. | Feb 1998 | A |
5723990 | Roohparvar | Mar 1998 | A |
5734567 | Griffiths et al. | Mar 1998 | A |
5745418 | Ma et al. | Apr 1998 | A |
5754567 | Norman | May 1998 | A |
5757712 | Nagel et al. | May 1998 | A |
5758100 | Odisho | May 1998 | A |
5761117 | Uchino et al. | Jun 1998 | A |
5768190 | Tanaka et al. | Jun 1998 | A |
5768195 | Nakamura et al. | Jun 1998 | A |
5773901 | Kantner | Jun 1998 | A |
5778418 | Auclair et al. | Jul 1998 | A |
5781478 | Takeeuchi et al. | Jul 1998 | A |
5787445 | Daberko | Jul 1998 | A |
5787484 | Norman | Jul 1998 | A |
RE35881 | Barrett et al. | Aug 1998 | E |
5799168 | Ban | Aug 1998 | A |
5802551 | Komatsu et al. | Sep 1998 | A |
5809515 | Kaki et al. | Sep 1998 | A |
5809558 | Matthews et al. | Sep 1998 | A |
5809560 | Schneider | Sep 1998 | A |
5818350 | Estakhri et al. | Oct 1998 | A |
5818781 | Estakhri et al. | Oct 1998 | A |
5822245 | Gupta et al. | Oct 1998 | A |
5822252 | Lee et al. | Oct 1998 | A |
5822781 | Wells et al. | Oct 1998 | A |
5831929 | Manning | Nov 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5838614 | Estakhri et al. | Nov 1998 | A |
5845313 | Estakhri et al. | Dec 1998 | A |
5847552 | Brown | Dec 1998 | A |
5860083 | Sukeawa | Jan 1999 | A |
5860124 | Matthews et al. | Jan 1999 | A |
5862099 | Gannage et al. | Jan 1999 | A |
5890192 | Lee et al. | Mar 1999 | A |
5901086 | Wang et al. | May 1999 | A |
5907856 | Estakhri et al. | May 1999 | A |
5909586 | Anderson | Jun 1999 | A |
5920884 | Jennings, III et al. | Jul 1999 | A |
5924113 | Estakhri et al. | Jul 1999 | A |
5928370 | Asnaashari | Jul 1999 | A |
5930815 | Estakhri et al. | Jul 1999 | A |
5933368 | Ma et al. | Aug 1999 | A |
5933846 | Endo | Aug 1999 | A |
5936971 | Harari et al. | Aug 1999 | A |
5937425 | Ban | Aug 1999 | A |
5953737 | Estakhri et al. | Sep 1999 | A |
5956473 | Ma et al. | Sep 1999 | A |
5959926 | Jones et al. | Sep 1999 | A |
5966727 | Nishino et al. | Oct 1999 | A |
5986933 | Takeuchi et al. | Nov 1999 | A |
5987563 | Itoh et al. | Nov 1999 | A |
5987573 | Hiraka | Nov 1999 | A |
5991849 | Yamada et al. | Nov 1999 | A |
6011322 | Stumfall et al. | Jan 2000 | A |
6011323 | Camp | Jan 2000 | A |
6018265 | Keshtbod | Jan 2000 | A |
6021408 | Ledain et al. | Feb 2000 | A |
6026020 | Matsubara et al. | Feb 2000 | A |
6026027 | Terrell, II et al. | Feb 2000 | A |
6034897 | Estakhri et al. | Mar 2000 | A |
6035357 | Sakaki | Mar 2000 | A |
6040997 | Estakrhi | Mar 2000 | A |
6047352 | Lakhani et al. | Apr 2000 | A |
6055184 | Acharya et al. | Apr 2000 | A |
6055188 | Takeuchi et al. | Apr 2000 | A |
6069827 | Sinclair | May 2000 | A |
6072796 | Christensen et al. | Jun 2000 | A |
6076137 | Asnaashari | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6081878 | Estakhri et al. | Jun 2000 | A |
6084483 | Keshtbod | Jul 2000 | A |
6097666 | Sakui et al. | Aug 2000 | A |
6115785 | Estakhri et al. | Sep 2000 | A |
6122195 | Estakhri et al. | Sep 2000 | A |
6125424 | Komatsu et al. | Sep 2000 | A |
6125435 | Estakhri et al. | Sep 2000 | A |
6128695 | Estakhri et al. | Oct 2000 | A |
6134145 | Wong | Oct 2000 | A |
6134151 | Estakhri et al. | Oct 2000 | A |
6141249 | Estakhri et al. | Oct 2000 | A |
6145051 | Estakhri et al. | Nov 2000 | A |
6151247 | Estakhri et al. | Nov 2000 | A |
6172906 | Estakhri et al. | Jan 2001 | B1 |
6173362 | Yoda | Jan 2001 | B1 |
6181118 | Meehan et al. | Jan 2001 | B1 |
6182162 | Estakhri et al. | Jan 2001 | B1 |
6202138 | Estakhri et al. | Mar 2001 | B1 |
6223308 | Estakhri et al. | Apr 2001 | B1 |
6226708 | McGoldrick et al. | May 2001 | B1 |
6230234 | Estakhri et al. | May 2001 | B1 |
6262918 | Estakhri et al. | Jul 2001 | B1 |
6272610 | Katayama et al. | Aug 2001 | B1 |
6275436 | Tobita et al. | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6279114 | Toombs et al. | Aug 2001 | B1 |
6285607 | Sinclair | Sep 2001 | B1 |
6327639 | Asnaashari | Dec 2001 | B1 |
6345367 | Sinclair | Feb 2002 | B1 |
6374337 | Estakhri | Apr 2002 | B1 |
6393513 | Estakhri et al. | May 2002 | B2 |
6397314 | Estakhri et al. | May 2002 | B1 |
6411546 | Estakhri et al. | Jun 2002 | B1 |
6467021 | Sinclair | Oct 2002 | B1 |
6490649 | Sinclair | Dec 2002 | B2 |
6567307 | Estakhri | May 2003 | B1 |
6578127 | Sinclair | Jun 2003 | B1 |
6587382 | Estakhri et al. | Jul 2003 | B1 |
6711059 | Sinclair et al. | Mar 2004 | B2 |
6714724 | Cook | Mar 2004 | B1 |
6725321 | Sinclair et al. | Apr 2004 | B1 |
6728851 | Estakhri et al. | Apr 2004 | B1 |
6751155 | Gorobets | Jun 2004 | B2 |
6757800 | Estakhri et al. | Jun 2004 | B1 |
6813678 | Sinclair et al. | Nov 2004 | B1 |
6898662 | Gorobets | May 2005 | B2 |
6912618 | Estakhri et al. | Jun 2005 | B2 |
6950918 | Estakhri | Sep 2005 | B1 |
6957295 | Estakhri | Oct 2005 | B1 |
6973519 | Estakhri et al. | Dec 2005 | B1 |
6978342 | Estakhri et al. | Dec 2005 | B1 |
7000064 | Payne et al. | Feb 2006 | B2 |
7201005 | Voglewede et al. | Apr 2007 | B2 |
20030033471 | Lin et al. | Feb 2003 | A1 |
20030227451 | Chang | Dec 2003 | A1 |
Number | Date | Country |
---|---|---|
0 557 723 | Jan 1987 | AU |
0 220 718 | May 1987 | EP |
0 243 503 | Nov 1987 | EP |
0 392 895 | Oct 1990 | EP |
0 424 191 | Apr 1991 | EP |
0 489 204 | Jun 1992 | EP |
0 522 780 | Jan 1993 | EP |
0 522 780 | Jan 1993 | EP |
0 544 252 | Jun 1993 | EP |
0 613 151 | Aug 1994 | EP |
0 617 363 | Sep 1994 | EP |
0 619 541 | Oct 1994 | EP |
0 663 636 | Jul 1995 | EP |
0 686 976 | Dec 1995 | EP |
0 897 579 | Jul 2000 | EP |
0 891 580 | Nov 2000 | EP |
0 896 669 | Nov 2000 | EP |
0 852 766 | May 2001 | EP |
0 852 765 | Sep 2001 | EP |
0 722 585 | May 2002 | EP |
0 910 826 | Jun 2002 | EP |
0 691 008 | Nov 2002 | EP |
0 861 468 | Apr 2003 | EP |
0 978 040 | May 2004 | EP |
1 157 328 | May 2005 | EP |
93 01908 | Aug 1993 | FR |
2 251 323 | Jul 1992 | GB |
2 291 990 | Feb 1996 | GB |
2 291 991 | Jul 1996 | GB |
2 297 637 | Jul 1996 | GB |
2 304 428 | Mar 1997 | GB |
2 348 991 | Dec 2002 | GB |
2 351 822 | Jan 2003 | GB |
2 384 337 | Jul 2003 | GB |
2 384 883 | Oct 2005 | GB |
2 384 338 | Nov 2005 | GB |
2 384 072 | Dec 2005 | GB |
2 411 499 | Feb 2006 | GB |
117881 | May 2003 | IS |
59-45695 | Sep 1982 | JP |
58-215794 | Dec 1983 | JP |
58-215795 | Dec 1983 | JP |
59-162695 | Sep 1984 | JP |
60-212900 | Oct 1985 | JP |
61-96598 | May 1986 | JP |
62-283496 | Dec 1987 | JP |
62-283497 | Dec 1987 | JP |
63-183700 | Jul 1988 | JP |
1-138694 | May 1989 | JP |
3-228377 | Oct 1991 | JP |
4-57295 | Feb 1992 | JP |
4-254994 | Sep 1992 | JP |
4-268284 | Sep 1992 | JP |
4-278297 | Oct 1992 | JP |
4-332999 | Nov 1992 | JP |
5-128877 | May 1993 | JP |
5-282883 | Oct 1993 | JP |
6-36578 | Feb 1994 | JP |
6-124175 | May 1994 | JP |
6-124231 | May 1994 | JP |
6-131889 | May 1994 | JP |
6-132747 | May 1994 | JP |
6-149395 | May 1994 | JP |
6-266596 | Sep 1994 | JP |
7-93499 | Apr 1995 | JP |
7-311708 | Nov 1995 | JP |
8-18018 | Jan 1996 | JP |
8-69696 | Mar 1996 | JP |
9-147581 | Jun 1997 | JP |
1388877 | Apr 1988 | SU |
1408439 | Jul 1988 | SU |
1515164 | Oct 1989 | SU |
1541619 | Feb 1990 | SU |
1573458 | Jun 1990 | SU |
1686449 | Oct 1991 | SU |
8400628 | Feb 1984 | WO |
WO 9420906 | Sep 1994 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10927871 | Aug 2004 | US |
Child | 10993692 | US |