The present application claims priority under 35 U.S.C. §119 of Swiss Patent Application No. CH-1968/10, filed Nov. 24, 2010, the disclosure of which is expressly incorporated by reference herein in its entirety.
The invention relates to a storage cassette for laboratory objects, in particular for storage at low temperatures. Furthermore, the invention also relates to a storage arrangement with a storage cassette of this type as well as the combination of a storage cassette with at least one laboratory object.
Storage cassettes for laboratory objects, which form a plurality of storage sites arranged one above the other to accommodate the laboratory objects, are known, e.g., from WO 02/059251. When storage cassettes of this type are required in a large number, it should be ensured that they can be produced as easily and inexpensively as possible.
The object of the present invention is to provide a storage cassette, which forms a plurality of storage sites arranged one above the other to accommodate laboratory objects, which can be produced in an inexpensive, tough and simple manner.
This object is attained by the storage cassette according to the independent claim.
Accordingly, the storage cassette has a back wall and two side walls standing perpendicular to the back wall. The side walls and the back wall are thereby formed by sections of a single piece of sheet metal bent towards one another. A storage cassette of this type can be produced easily and is tough due to the small number of parts used.
Furthermore, a top part or base part can be arranged on an upper and/or lower end of the storage cassette, which part is advantageously likewise formed by a bent section of the same piece of sheet metal. The strength of the cassette is further increased thereby and the price is reduced.
The storage sites of the storage cassette can be formed by bent angles of the piece of sheet metal, on which the laboratory objects can be placed. The angles can thus also be shaped from the same sheet metal as the back walls.
The angles on the back wall advantageously have retention elements bent upwards on their front edge in order to hold the laboratory objects secure against slipping.
Advantageously, predetermined bending points are provided in the piece of sheet metal in order to facilitate the locally precise bending of the same. These predetermined bending points are preferably formed in the shape of elongated holes or slots, which can be made in the same step as the cutting of the piece of sheet metal and thus in a well-defined spatial position.
The invention also relates to a storage arrangement with at least one chamber and at least one storage cassette of the type described above arranged in the chamber.
Further embodiments, advantages and applications of the invention are shown by the dependent claims and from the following description based on the figures. They show:
For example, the samples are accommodated in sample tubes, which in turn are arranged in plates. In each case several of these sample plates are stored one above the other in a storage cassette.
The storage arrangement has an insulated outer housing 2, which surrounds a chamber 3. At least one Dewar flask 4 is arranged in the chamber 3. Preferably, several of such Dewar flasks 4 are provided. Each Dewar flask 4 has in a known manner an evacuated, mirrored insulation wall, which has low thermal conductivity. The Dewar flasks in the embodiment shown are closed on all sides and a lid 5 is respectively provided for access to their interior.
The lid covers an opening 6 arranged on the top of the Dewar flask.
The chamber 3 is preferably embodied as a cooling chamber. Tc of the chamber 3 is preferably below 0° C., in particular below −20° C. or -50° C. This reduction of the temperature prevents ice formation in the Dewar flasks 4 or on the samples. The storage temperature Ts in the Dewar flasks 4 is less than the chamber temperature Tc and is preferably at the referenced “very low temperatures,” i.e., typically at −196° C.
A cooling of the chamber 3 is not absolutely necessary however. The chamber 3 can also e.g., merely contain a defined atmosphere (for example dry air or nitrogen atmosphere), or it can be a storage area that is not specially air-conditioned.
Furthermore, a picking device 8 is arranged in the chamber 3. This picking device 8 has respectively one transport device for the storage cassettes, the sample plates and the sample tubes. It is arranged in a moveable manner above the Dewar flasks 4. As can be seen from
The storage arrangement further comprises a first cooling device 9a for producing the interior temperature Ti in the chamber 3 as well as a second cooling device 9b for producing the cooling temperature Ts in the Dewar flasks 4.
The chamber 3 can be accessed via a door 11, which is large enough to accommodate the Dewar flasks 4.
A first embodiment of a Dewar flask 4 is shown in
A positioning drive 22 is used to rotate the carousel 18 about the rotation axis 16 and to bring it into defined positions.
The storage cassettes 20 are arranged in several concentric circles around the rotation axis 16, radially positioned by means of vertical walls 24 and moveable in the vertical direction.
The door 5 can be automatically opened and closed with a door drive 26. It is arranged on the top of the Dewar flask 4, and positioned and dimensioned such that when the door 5 is open each storage cassette 20, which has been rotated with the positioning drive 22 into the region of the door opening, can be drawn out from above. Preferably, the horizontal diameter of the door opening is smaller than half the horizontal diameter of the Dewar flask 4, however, so that an excessive loss of cooling can be avoided when the door 5 is opened.
A second embodiment of a Dewar flask is shown in
In the embodiment according to
The storage cassette forms a plurality of storage sites arranged one above the other, each of which can accommodate a sample plate. They are structured such that they ensure a high mechanical precision over a very wide temperature range. Furthermore, they have centering and transport devices which render possible a high mechanical positioning accuracy and the automatic transport.
In the exemplary embodiment shown, each of the storage sites is formed by several angles 40, 42. These angles form support elements and project inwards from the side walls 30 (angle 40) or the back wall 32 (angle 42) and form lateral and back supports for the sample plates. The angles 42 on the back wall 32 have on their front edge retention elements 44 (see
The side walls 30 of the storage cassettes 20 are bent upwards at the front and thus form bent-up regions 46, with which the storage cassette 20 is positioned laterally in the Dewar flask 4. As shown in
As can be seen in particular from
Predetermined bending points 39 are provided between at least one part of the bent-up sections of the piece of sheet metal, in particular in the form of elongated holes or slots, which facilitate a locally precise bending of the piece of sheet metal during production.
Advantageously, the outline of the piece of sheet metal is cut by means of laser processing and the predetermined bending points 39 are also produced with the laser in the same step so that a high relative positioning accuracy is ensured.
The storage cassette shown is suitable not only for use in the storage arrangement described here, but also for use for other purposes, e.g., in general for storage of laboratory objects (such as, e.g., microtitration plates) inside and outside climate-controlled cabinets.
|L/2−A|<B,
where L is the length of the laboratory plate or the storage site (in the extension direction of the scoop), A is the distance between the two support elements or angles 40 arranged on the side wall and B is the length of one of the support elements, in particular the front (i.e., charging side) support element or angle 40. The notation |x| designates the amount of x.
The picking device 8 is shown in more detail in
At least one cassette lift 60 is arranged on the carriage 56, with which cassette lift storage cassettes can be removed from the Dewar flasks 4 in the vertical direction and inserted therein again.
In the embodiment according to
The structure of the cassette lift is described below.
Furthermore, a handling device 100 is provided on the carriage 56. In the embodiment according to
The structure and the function of the handling device 100 correspond essentially to those of the handling device according to WO 02/059251.
The handling device 100 comprises a vertical guide 102, on which a handling carriage 104 is arranged in an automatically moveable manner in the vertical direction. A scoop 106 that can be extended horizontally is provided on the handling carriage 104. The scoop 106 can preferably be pivoted by at least 180° about a vertical axis so that in the embodiment according to
A climate controlled cabinet 110 can be provided outside the outer housing at the location of the transfer station 108, which climate controlled cabinet is able to exchange laboratory objects or storage plates with the transfer station 108.
A first telescopic section 62 is attached to the carriage 56 in a stationary manner. A first vertical rail 69 is arranged on the first telescopic section 62, on which first vertical rail a first vertical drive 66 is arranged in a slidable manner. The vertical drive 66 is connected via a first guide 70 to the first vertical rail 69 and engages with a sprocket 72 in a gear rack 74 on the first telescopic section 62.
Furthermore, a second vertical rail 76 is arranged on the first telescopic section 62, to which second vertical rail the second telescopic section 64 is attached in a vertically moveable manner. It is connected via a flexible, tough, low-temperature resistant belt or a chain 80 deflected at the upper end of the first telescopic section 62 to the first vertical drive 66, so that a lowering or raising of the first vertical drive 66 causes a raising or lowering of the second telescopic section 66 by the same height relative to the first telescopic section 62. Thus the second telescopic section 64 can be extended or retracted in a telescopic manner with the first vertical drive 64.
A third vertical rail 82 is arranged on the second telescopic section 64, on which third vertical rail an arm 84 of the cassette lift 60 is supported in a vertically moveable manner. The second vertical drive 68 is designed to move the arm 84 vertically with respect to the second telescopic section 64. In the embodiment shown in
A gripper device 88 with a gripper drive 89 is arranged on the arm 84, with which the handle 36 of a storage cassette 20 can be grasped from above.
At least one centering element 90 is provided at a fixed height on the carriage 56 or on the first telescopic section 62 above the gripper device 88, which centering element forms a seat tapering upwards for accommodating a storage cassette 20, when the storage cassette is moved into its uppermost position with the cassette lift 60. Since at the same time the gripper device 88 has some clearance at the side, the centering element 90 defines the horizontal position of the raised storage cassette 20 and thus makes it possible to exactly align the storage cassette horizontally.
The third embodiment of the cassette lift is not based on a telescopic arrangement of elements. Instead, the chain 80 together with rollers 96, 97 forms a pulley which is used to lower the gripper device 88 into the Dewar flasks 4. To this end, the chain is deflected over at least one lower and at least one upper roller 96 and 97 respectively, cf.
In the embodiment shown, the vertical drive is arranged on the first vertical rail 69 of a rail carrier 62 (
The chain 80 deflected at the upper end of the cassette lift 60 hangs vertically downwards and bears on its lower end the gripper device 88, which, as in the second embodiment of the cassette lift, is formed by an electromagnet, with which the respective storage cassette can be retained magnetically. (In
In order to facilitate the grasping of a storage cassette 20 by means of magnetic force, advantageously a steel or iron plate 101 is provided at one upper end of the storage cassette 20, as is shown in
In order to stabilize the chain 80 laterally somewhat, a guide element 98 is provided, which is guided on a second vertical rail 76 in a longitudinally slidable manner. The second vertical rail 76 is likewise arranged on the rail carrier 62. The guide element 98 forms a lateral guide for the chain 80, preferably an eyelet 116, through which the chain 80 runs. In the lowered position of the storage cassette 20 (cf.
The embodiment according to
The use of a pulley is furthermore advantageous because it makes it possible to reduce the vertical stroke of the motor and thus the installation height. However, the chain or the belt 80 does not necessarily need to be arranged in a pulley. Instead of a pulley it is also possible e.g. to roll up the belt or the chain 80 on a driven roller or reel, or to unroll it therefrom, as shown in the embodiment for the chain 94 shown in
Additionally or alternatively to the centering elements 90 and 91, a centering element 95 can also be provided on the Dewar flask 2, as is shown in
In the embodiment according to
As shown in
The back wall 32 of the storage cassettes 20 is structured such that the holder elements 107 have room to be brought from below behind a laboratory object held in the storage cassette 20. For this purpose the back wall 32, as shown in
It is mentioned in the above description that the storage arrangement 1 as well as the storage cassettes 20 are used to store sample tubes. However, they are also suitable for storing samples in another form, generally suitable for storing laboratory objects. These can be, e.g., biological or chemical samples. A typical use also relates to the storage of laboratory samples in microtitration plates, in which case the sample plates are embodied as microtitration plates. It is also conceivable that, instead of the sample plates, sample holders, e.g., flasks, are used, which each hold only one sample.
While preferred embodiments of the invention are described in the present application, it should be noted that the invention is not restricted thereto and can also be carried out in another manner within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1968/10 | Nov 2010 | CH | national |