The present invention relates to a security system for storage compartments, cargo containers, and the like. More particularly, the present invention relates to a latch assembly and master lock assembly mounted in the storage compartment interior for securing an access door of the storage compartment, wherein the interior latch assembly and master lock assembly may be operated by tamper-resistant controls on the compartment exterior.
Every year, millions of dollars in equipment are stolen from construction sites. Often, a single piece of equipment costs thousands of dollars. In addition to the loss of equipment, the time taken to replace even the most inexpensive equipment can be great. Construction delays can result in thousands, if not millions of dollars in construction contract damages, lost revenue, and other costs.
At the construction site, storage containers are usually provided to store this equipment and used to deter theft thereby saving significant money and time. However, many of these containers have no, or only simple locking devices that have little effect against theft. Additionally, these devices can be defeated externally with little effort, are overly burdensome, unnecessarily complicated and do little to actually make the containers more secure.
For example, an external padlock can be easily defeated with bolt cutters. To compound the problem, a typical situation of individual insider theft occurs by one employed at a construction site who, for example, may be specifically skilled in metalworking. Such an individual has little trouble cutting through external locking systems.
Previous attempts to address the problem of theft from storage compartments using an internally mounted security system have only produced weak solutions that are easily defeated and provide a false sense of security. For example, U.S. Pat. Nos. 3,933,382 and 5,760,703 disclose security locks for the door of a cargo truck. The locks operate using a single electrically controlled bolt which locks with a wheel track of the door assembly, or in a bracket carried by the door. There is no other lock or latch assembly utilized to prevent the door from being unlocked. Overcoming a single lock is relatively straight forward and may easily be done to open the door.
U.S. Pat. No. 4,866,963 discloses a security system for locking doors on a cargo truck. The system employs a latch assembly carried on the exterior of the doors, but the latch assembly has no lock. Again, only a single bolt, as discussed above, on the interior side of the door is utilized to lock and secure the door. Because there is no cooperation between the exterior latch assembly and the internally mounted security bolt, only a single bolt secures one of the two large storage compartment doors, which can be easily defeated.
U.S. Pat. No. 6,298,699 shows a typical electronic combination lock for a residential or commercial entrance door having a dial-shaped handle with a keypad incorporated therein. When the correct combination is selected a deadbolt may be unlocked. This type of lock is not meant for use in the type of security system needed to control access to a large cargo container as its small size makes it easily defeatable given the size of the container doors.
Accordingly, an object of the present invention is to provide a security system mounted on the interior of a storage compartment which does not have externally mounted components that may be easily tampered with to gain access to the compartment interior.
Another object of the present invention is to provide a security system for a storage compartment which is cost efficient, easy to use, and requires multiple components to be manipulated in order to unlock the security system and open the door to the storage compartment.
Another object of the present invention is to provide a security system for a storage compartment that includes multiple internal securing points for locking the door, which are operated from a single internally mounted latch assembly controlled by a plurality of internally and externally mounted tamper-resistant controls that must be operated in a given order to successfully unlock the door.
The above objectives are accomplished according to the present invention by providing a security system for preventing unauthorized access to a storage container having an entryway for allowing access to a container interior and a door for closing the entryway and preventing access to the container interior, which includes a latch assembly carried by the door on an interior side of the door. The latch assembly has a closed position for latching the door to prevent access through the entryway to the storage container, and an open position in which the door may be opened to allow access through the entryway to the storage container.
At least one reciprocating latch element is included in the latch assembly for latching the door with the storage container when the latch assembly is in the closed position. A receiving member is carried by the storage container for receiving the latch element so that the latch element and receiving member latch the door closed. A latch actuator is included in the latch assembly for moving the latch assembly between closed and open positions.
An operator is disposed on an exterior side of the door outside the container for operating the latch assembly through the door. The operator connects with the latch actuator for operating the latch actuator on the interior side through the door, and thereby moving the latch assembly between opened and closed positions. In a particularly advantageous embodiment, the latch actuator is a rack and pinion mechanism carried by the door having a pinion meshing with a plurality of toothed racks. The operator engages and rotates the pinion which converts the rotary movement of the pinion to the linear movement of the racks in order to operate the latch assembly. The racks are connected to the latch elements so that when the pinion is rotated by the operator, the latch elements latch the door to the storage container receiving members.
A housing is disposed on the exterior side of the door having an operator slot for receiving and stowing the operator. The operator has a first position recessed within the operator slot for preventing movement of the latch assembly to the open position, and a second position extended out from the operator slot allowing movement of the latch assembly between the closed and open positions. Accordingly, access to the storage container interior is prevented when the operator is recessed within the housing and the latch assembly is in the closed position.
In the preferred embodiment, an operator lock assembly is carried on the exterior side of the door for interlocking with the operator. The operator lock assembly has a locked condition for locking the operator to the housing in the first position, and an unlocked condition for allowing the operator to extend to the second position and operate the latch assembly to open or close the door. Preferably, the operator includes an operating handle for manually manipulating the operator to move the latch assembly between the open and closed positions. In this embodiment, the operator lock assembly is carried by the handle for locking the handle to the housing in the operator slot when in the recessed first position.
Advantageously, an elongated shaft is connected to the operator that extends through the door for engaging with the latch assembly to move the latch assembly between closed and open positions. A master lock assembly is carried by the door on the interior side of the storage container for interlocking with the elongated shaft to control movement of the shaft by the operator. A removable master lock actuator is operable from the exterior side of the storage container through a keyhole in the door for moving the first locking part to position the master lock assembly between the engaged and disengaged positions.
A tamper-resistant control is carried on the exterior side of the door for controlling access to the master lock assembly through the keyhole. Preferably, the keyhole passes though the housing for the operator and then the door to allow insertion of the removable master lock actuator into the storage container interior to operate the master lock assembly. The tamper-resistant control is disposed within the housing to control insertion of the master lock actuator through the keyhole. The tamper-resistant control includes a deployed position in which the keyhole is blocked by the tamper-resistant control to prevent the removable master lock actuator from accessing the master lock assembly, and a retracted position wherein the keyhole is open and the removable master lock actuator may be inserted through the door to operate the master lock assembly.
The construction designed to carry out the invention will hereinafter be described, together with other features thereof. The invention will be more readily understood from a reading of the following specification and by reference to the accompanying drawings forming a part thereof, wherein an example of the invention is shown and wherein:
Referring now to the drawings, the invention will be described in more detail. As best shown in
Referring to
In order to latch door 10 to the storage container in the closed position, latch assembly 14 includes reciprocating latch elements 16, 18, 20, and 22. Latch elements 16 and 18 are vertical reciprocating latch elements aligned to engage door header 24 and door footer 25 of storage container B when latch assembly 14 is in the closed position. Header and footer 24 and 25 preferably include receiving members 26 for receiving latch elements 16 and 18 to latch door 10 in the closed position. The receiving members can be formed from holes, with or without reinforcement, cut into the header and footer, having a sufficient diameter to receive latch elements 16 and 18. In the preferred embodiment, receiving members 26 are made from hardened metal sleeves flush mounted into the header and footer of the storage container doors, best shown in FIG. 1. In the preferred embodiment, the latch elements are formed from hardened metal rods resistant to bending, breaking, or cutting.
Latch element 20 and 22 are horizontally disposed reciprocating latch elements. Latch element 20 is aligned to engage second door 12 and secure both doors 10 and 12 together in a closed and locked position. Latch element 22 is aligned to engage receiving member 26a carried by sidewall 23 of the storage container. Preferably, a secondary latch assembly 14a is carried on interior side 15a of door 12 for latching the door in a closed position to prevent access to the storage container interior. When doors 10 and 12 are moved to close off the entryway and latch assembly 14 is moved to the closed position, latch element 20 is moved horizontally to interlock with door 12, preferably by engage a securing bracket 28 carried by door 12, which locks doors 10 and 12 together. In the preferred embodiment, secondary latch assembly 14a includes secondary reciprocating latch elements 16a and 18a vertically aligned to engage receiving members 26b. Secondary reciprocating latch element 22a is horizontally aligned to engage receiving member 26a carried by sidewall 27 of the storage container. In this construction and arrangement, second door 12 can be locked in the closed position together with first door 10 such that each side of the doors 10 and 12 is locked directly to the storage container of the adjacent door so that each latch element must be defeated before the door can be removed. In the preferred embodiment, secondary latch assembly 14a has no components operable from outside the storage container and may only be moved to the open position by rotating latch handle 21 from the interior of the container after latch assembly 14 has been unlocked and the door opened.
Referring now to
Latch assembly 14 includes a latch actuator, designated generally as 32, disposed in latch housing 34 affixed to mounting plate 30. Latch actuator 32 is connected to latch elements 16, 18, 20 and 22 for reciprocating the latch elements to engage and disengage the storage container walls to position the latch assembly between open and closed positions. Latch actuator 32 is moved by rotating an operator 36 (
In the preferred embodiment, latch actuator 32 is formed using a rack and pinion mechanism where pinion 40 is engaged by elongated shaft 38. Referring to
Referring now to
In the preferred embodiment, first locking part 58 is a hardened metal deadbolt having a key 60 which can be inserted into second locking part 43 of elongated shaft 38. Preferably, second locking part 43 is the same keyway of elongated shaft 38 that engages pinion 40. The keyway simply extends along the length of the elongated shaft into the portion extending beyond the latch housing. Additionally, various other means of interlocking first locking part 58 and second locking part 43 are well know to those skilled in the art and within the scope and spirit of the present invention. In the preferred embodiment, master lock assembly 54 is a mechanical lock capable of retracting first locking part 58 from second locking part 43 and then interlocking again. Mechanical locks are well-known in the art and only a description necessary to the understanding of the present invention is disclosed herein. A suitable mechanical lock which works well for purposed of the present invention is disclosed in U.S. Pat. No. 4,142,388.
Referring to
Moving to the exterior operating component of the security system, as shown in
An operator lock assembly, designated generally as 74, is carried on exterior side 63 of door 10 for locking the operator in the recessed first position within housing 64. The operator lock assembly has a locked condition for locking the operator in the first position, and an unlocke condition for allowing the operator to extend to the second position and operate the latch assembly to open or close the door. In the illustrated embodiments, operator 36 is shown as an oval shaped operating handle for manually manipulating the latch assembly between the open and closed positions when the operating handle is rotated. The operating handle is received in the corresponding oval shaped recess 66 as described above. The operator lock assembly is conveniently carried by the operating handle for locking the handle to housing 64 in the operator slot when in the first position.
Referring to
Referring to
Referring to
Advantageously, a tamper-resistant control 84 is carried by the door for controlling access to the master lock assembly through keyhole 82. The tamper-resistant control has a deployed position, designated generally as 86, shown in
In the preferred embodiment, tamper-resistant control 84 comprises a slide-bolt disposed within a channel 90 including in housing 64 for allowing slide-bolt 84 to move between the deployed and retracted positions to block and open the keyhole, respectively. The tamper-resistant control includes a tab 92 extending into operator slot 66 for manually moving the slide-bolt between deployed position 86 and retracted position 88 when the operator is in the second position extending out of the operator slot. In deployed position 86, the slide-bolt extends perpendicularly through the keyhole to block the keyhole and prevent the removable master lock actuator from being inserted through the door, as well as, preventing tampering with the master lock assembly. The slide-bolt is slid into position by manually pushing tab 92. To prevent the slide-bolt from being backed out of the keyhole, tab 92 is received in operator recess 94 (
While a preferred embodiment of the invention has been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
This application is a continuation-in-part of application Ser. No. 10/023,289, filed Dec. 14, 2001 U.S. Pat. No. 6,705,136 which claims priority of Provisional Application Ser. No. 60/294,327, filed May 30, 2001.
Number | Name | Date | Kind |
---|---|---|---|
279334 | Clark | Jun 1883 | A |
596050 | Byrnes | Dec 1897 | A |
932330 | Rotchford | Aug 1909 | A |
1004690 | Russell | Oct 1911 | A |
2131033 | Barrington et al. | Sep 1938 | A |
2570160 | Schoch | Oct 1951 | A |
2883849 | Wilson | Apr 1959 | A |
3647243 | Nagy et al. | Mar 1972 | A |
3812403 | Gartner | May 1974 | A |
3834198 | Wiczer | Sep 1974 | A |
3933382 | Counts et al. | Jan 1976 | A |
4227388 | Nigrelli et al. | Oct 1980 | A |
4688492 | Peghetti | Aug 1987 | A |
4789859 | Clarkson et al. | Dec 1988 | A |
4866963 | Leininger et al. | Sep 1989 | A |
5010754 | De Angelo et al. | Apr 1991 | A |
5094483 | James | Mar 1992 | A |
5351512 | Pearlman | Oct 1994 | A |
5404736 | Lugo | Apr 1995 | A |
5532521 | Leininger | Jul 1996 | A |
5603328 | Zucker et al. | Feb 1997 | A |
5609051 | Donaldson | Mar 1997 | A |
5760703 | Becker | Jun 1998 | A |
5806355 | Lanigan et al. | Sep 1998 | A |
5833111 | Martineau | Nov 1998 | A |
5893282 | Runge et al. | Apr 1999 | A |
5984383 | Parikh et al. | Nov 1999 | A |
6050116 | Cole | Apr 2000 | A |
6092404 | Chhatwal | Jul 2000 | A |
6240755 | Da Silva | Jun 2001 | B1 |
6298699 | Gartner et al. | Oct 2001 | B1 |
6397648 | Morris et al. | Jun 2002 | B1 |
6418761 | Wytcherley et al. | Jul 2002 | B1 |
6474119 | Halvorson et al. | Nov 2002 | B1 |
6705136 | Porter | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
789242 | Jul 1968 | CA |
20760 | Jan 1901 | CH |
1179411 | Jan 1970 | GB |
Number | Date | Country | |
---|---|---|---|
20030106356 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
60294327 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10023289 | Dec 2001 | US |
Child | 10349227 | US |