The present invention generally concerns storage compartments or units for storing articles and in particular the invention relates to storage compartments for refrigeration appliances such as household refrigerators.
The storage of articles in a storage compartment having a controlled environment is known. For example, storage compartments can be provided the interiors of which are capable of being isolated from the ambient air and from which gases such as oxygen can be removed. Perishable foodstuffs kept in such storage compartments will remain fresher for longer periods of time and the deterioration of the foodstuffs delayed. The maintenance of foodstuffs in this manner can be enhanced where the storage unit is located in a refrigeration appliance such as a household refrigerator.
Foodstuffs that are stored in storage compartments from which gases have been removed and that are maintained isolated from the ambient surroundings are sometimes said to be kept under vacuum. That is not to imply that all or even substantially all of the gases will have been evacuated from the storage compartments where the foodstuffs are maintained. The extent to which gases are evacuated from the storage compartments is largely a matter of choice and depends to a great extent on the capability of the device, such as a pump, that is used to evacuate the gases.
Examples of storage systems, including storage compartments of the type described above, are disclosed in U.S. patent application Ser. No. 11/758,141, filed on Jun. 5, 2007 and entitled “Storage Systems” which application is hereby incorporated herein by reference.
According to one aspect of the invention, a storage compartment comprises an external enclosure having an opening by means of which access may be had to the interior of the enclosure and a holding compartment that is capable of being inserted into and withdrawn from the interior of the external enclosure through the opening in the external enclosure. The external enclosure and the holding compartment have coacting surfaces, and a seal is interposed between those coacting surfaces for sealing off the interior of the holding compartment to the entry of gases from outside the holding compartment. The holding compartment is adapted to be in gas flow communication with a gas evacuation system for removing gases from the interior of the holding compartment. Complementary surfaces at the holding compartment and at the exterior of the external enclosure are in engagement with one another and provide the surfaces along which the holding compartment travels when it is inserted into and when it is withdrawn from the interior of the external enclosure.
According to yet another aspect, the holding compartment can include a front panel that includes the coacting surface of the holding compartment and a pan for holding articles placed within the holding compartment. A forward end of the pan can be supported at the front panel and a rearward end of the pan can be supported at the interior of the external enclosure. In this aspect, the seal can be mounted at the coacting surface at the front panel. Additionally, a bracket can be mounted at the front panel for securing the seal in place at the coacting surface at the front panel and providing a support system for supporting the forward end of the pan.
According to yet a further aspect, a seal can be interposed between a coacting surface of a first component of a storage compartment and a coacting surface of a second component of the storage compartment. The first and second components of the storage compartment are movable with relation to one another and are adapted to be moved together into a sealing relationship together with the seal. The seal can include a first portion and a second portion. The first portion and the second portion of the seal can be arranged with respect to one another such that the first portion of the seal comes into contact with the one of the coacting surfaces of the first and second components of the storage compartment at which the seal is not mounted before the second portion of the seal comes into contact with the one of the coacting surfaces of the first and second components at which the seal is not mounted when the first component is inserted into the interior of the second component and the coacting surfaces of the first component and the second component are brought together in a sealing relationship with the seal. In that case, the first portion of the seal is more flexible than the second portion of the seal, whereby, as the coacting surfaces of the first and second components are brought together in a sealing relationship, the first portion of the seal forms an initial seal between the coacting surfaces of the first and second components. The second portion of the seal forms a more substantial additional seal between the coacting surfaces of the first and second components as the coacting surfaces of the first and second components are brought closer together.
According to still a further aspect, a latching mechanism is provided for securing together a first component and a second component of a storage compartment, such as the external enclosure and holding compartment of the storage compartment. The latching mechanism can comprise a fixed retaining element mounted at one of the first component and the second component and a movable latching element mounted at the other one of the first component and the second component. The movable latching element comprises a hook-shaped element in which is located an opening, the hook-shaped element being movable between a position where the hook-shaped element is free of the fixed retaining element and a position where the hook-shaped element is latched to the fixed retaining element. A driving arrangement is operatively associated with the hook-shaped element for moving the hook-shaped element between these two positions. The driving arrangement can include a motor with a drive shaft attached to a cam located in the opening in the hook-shaped element so as to rotate the cam within the opening in the hook-shaped element and cause the hook-shaped element to move between the two positions. A fixed pin can be located in a guide slot in the hook-shaped element, the guide slot having a configuration such that the fixed pin and the guide slot cooperatively assist in causing the hook-shaped element to move between the two positions. A flange can be attached to the cam so as to rotate with the cam, the flange having two contact points, one contact point adapted to contact a control switch when the hook-shaped element is in the position free of the fixed retaining element and the other contact point adapted to contact the control switch when the hook-shaped element is latched to the fixed retaining element.
With all of the foregoing aspects and embodiments, the storage compartment can be located in the interior of a refrigeration appliance such as the fresh food compartment of a household refrigerator.
Referring to the drawings,
The refrigerator 10 also incorporates in the fresh food compartment 12 an embodiment 30 of the storage compartment of the invention. Although the storage compartment 30 of the invention is shown and described herein with reference to the incorporation of the storage compartment in the fresh food compartment of a household refrigerator, the compartment can be used in other circumstances such as, for example, in other types of refrigeration appliances and in other types of controlled environments, such as in the freezer compartment of a refrigerator. Or the storage compartment can be used as a self-contained storage compartment outside a controlled environment. For example, the storage compartment of the invention can be located in a household kitchen cabinet. Additionally, the storage compartment 30 can be located at virtually any location in the fresh food compartment and more than one storage compartment can be provided.
The embodiment of the storage compartment of the invention shown in the drawings can have at least two modes of operation as described in more detail in U.S. patent application Ser. No. ______ referred to above. As indicated in that application, in a first mode of operation, gases are evacuated from the storage compartment while the compartment is sealed from the admittance of gases from the exterior of the compartment, whereby the articles being stored in the compartment are stored at a pressure less than the pressure at the exterior of the storage compartment. Articles stored in this manner are sometimes said to be stored under vacuum. It will be understood that when the pressure in the storage compartment is less than the pressure at the exterior of the compartment, less oxygen will be present in the compartment so that any deleterious effect of the oxygen on articles stored in the compartment will be mitigated.
In a second mode of operation, gases are evacuated from the storage compartment while the compartment is open to the admittance of gases from the exterior of the compartment, whereby the articles being stored are ventilated by the gases admitted to the storage compartment. Typically, the gases admitted will comprise the ambient air. This arrangement is of advantage when the storage compartment is being used as a crisper in a refrigerator fresh food compartment. The storage compartment can also have a third mode of operation wherein both the first mode of operation and the second mode of operation are rendered inoperative.
The embodiment of the storage compartment shown in the accompanying drawings can function so that when the articles are stored in the first mode of operation, the storage compartment is operative to intermittently remove additional gases from the compartment, whereby the pressure at which the articles are being stored is maintained at less than the pressure at the exterior of the compartment. The removal of additional gases may be required for example because of the infiltration into the storage compartment of the gases or the generation of gases by the articles stored in the storage compartment.
One embodiment of the storage compartment 30 of the invention is shown in greater detail in
The storage compartment 30 is shown in
The external enclosure 31 includes an upper wall 32, a bottom wall 34, opposed side walls 36, only one of which can be seen in
The holding compartment 41 comprises a front panel 42 and a pan 44, shown in greater detail in
From the foregoing description, it will be understood that the holding compartment 41 is capable of being inserted into the interior of the external enclosure 31 through the opening 39 in the external enclosure, for storing articles contained within the holding compartment, and is capable of being withdrawn from the interior of the external enclosure 31 when access is to be had to the interior of the holding compartment. This movement of the holding compartment 41 into and out of the interior of the external enclosure 31 is accomplished by means of complementary surfaces at the holding compartment and at the exterior of the external enclosure that are in engagement with one another and along which the holding compartment travels when it is inserted into and withdrawn from the interior of the external enclosure 31. More specifically, with reference to
Each of the external enclosure 31 and the holding compartment 41 have a coacting surface that comes closer to the other coacting surface as the holding compartment is inserted further into the interior of the external enclosure. A seal 60 is interposed between the coacting surfaces of the external enclosure 31 and the holding compartment 41 for sealing off the interior of the holding compartment to the entry of gases from outside the holding compartment when the holding compartment is inserted into the external enclosure and the coacting surfaces of the external enclosure and the holding compartment are brought together in a sealing relationship with the seal. These features of the external enclosure and the holding compartment are best seen with reference to
It is first noted that the coacting surface 33 of the external enclosure is located at the front portion of the external enclosure at the perimeter of the opening 39 in the external enclosure as shown in
Although the seal 60 is shown as mounted at the coacting surface 40 of the holding compartment 41, the seal can be mounted at either one of the coacting surface 40 of the holding compartment or the coacting surface 33 of the external enclosure 31. One way of mounting the seal 60 is best seen in
The seal 60, in addition to the flange 64 and the projection 66, includes a first portion 61 and a second portion 62. The first portion 61 and the second portion 62 of the seal 60 are arranged with respect to one another such that the first portion 61 of the seal will come into contact with the one of the coacting surfaces of the external enclosure 31 and the holding compartment 41 at which the seal is not mounted (coacting surface 33 in the embodiment illustrated in the drawings) before the second portion 62 of the seal comes into contact with the one of the coacting surfaces of the external enclosure and the holding compartment at which the seal is not mounted when the holding compartment 41 is inserted into the interior of the external enclosure 31 and the coacting surfaces 33 and 40 of the external enclosure and the holding compartment, respectively, are brought together in a sealing relationship with seal 60. The first portion 61 of the seal is more flexible than the second portion 62 of the seal and, as the coacting surfaces of the external enclosure 31 and the holding compartment 41 are brought together in a sealing relationship with the seal 60, the first portion 61 of the seal forms an initial flexible seal between the coacting surfaces of the external enclosure and the holding compartment. And the second portion of the seal 62, which is heavier and more substantial than the first portion 61 of the seal, forms a more substantial additional seal between the coacting surfaces of the external enclosure and holding compartment as the coacting surfaces of the external enclosure and the holding compartment surfaces are brought closer together as a result of the holding compartment being inserted further into the interior of the external enclosure. In the embodiment of the seal shown in
In the embodiment of the seal shown in the drawings, the first portion 61 of the seal 60 comprises a web that has an interior end attached at an attachment location 63 to the second portion 62 of the seal and a free end that extends away from the attachment location 63 and the coacting surface 40. The first portion 61 of the seal 60 is sufficiently flexible that the free end of the first portion of the seal will flex about the attachment location 63 where the interior end of the web is attached to the second portion of the seal and allow the coacting surface 33 of the external enclosure to come into contact with the second portion 62 of the seal when the coacting surfaces of the external enclosure and the holding compartment continue to be brought closer together as a result of the holding compartment 41 being inserted further into the interior of the external enclosure 31. Also in that embodiment, as shown in
The application of the seal 60 is not limited to a storage compartment comprising an external enclosure and a holding compartment but the seal can also be utilized with other structures comprising a storage compartment. For example, the seal can be mounted at a coacting surface of a first component of a storage compartment and interposed between the coacting surface of the first component of the storage compartment and a coacting surface of a second component of the storage compartment, the first and second components of the storage compartment being movable with relation to one another such that their coacting surfaces are adapted to be moved together into a sealing relationship along with the seal, whereby gases may be evacuated from the first component of the storage compartment and the pressure in the first component of the storage compartment reduced. As described above, the seal would include a first portion and a second portion arranged with respect to one another such that the first portion of the seal would come into contact with the coacting surface of the second component of the storage compartment before the second portion of the seal comes into contact with the coacting surface of the second component of the storage compartment when the first component and the second component are brought together in a sealing relationship with the seal. The first portion of the seal would be more flexible than the second portion of the seal, whereby, as the coacting surfaces of the first component and the second component of the storage compartment are brought together in a sealing relationship with the seal, the first portion of the seal would form an initial seal between the coacting surfaces of the first component and the second component and the second portion of the seal would form a more substantial additional seal between the coacting surfaces of the first component and the second component as the coacting surfaces of the first component and the second component of the storage compartment are brought closer together.
Also as described with reference to the holding compartment 41 and the external enclosure 31, the first portion of the seal would comprise a web that has an interior end attached at an attachment location to the second portion of the seal and a free end that extends away from the attachment location and the coacting surface of the first component of the storage compartment at which the seal is mounted. The web would be sufficiently flexible that the free end of the web would flex about the attachment location where the interior end of the web is attached to the second portion of the seal and allow the coacting surface of the second component of the storage compartment to come into contact with the second portion of the seal when the coacting surfaces of the first component and the second component of the storage compartment are brought closer together. The surface of the second portion of the seal that comes into contact with the coacting surface of the second component of the storage compartment would be convex in one embodiment.
As noted above, the interior of the storage compartment 30, including the interior of the holding compartment 41, is adapted to be in gas flow communication with a gas evacuation system for removing gases from the interior of the storage compartment, including the interior of the holding compartment. Such a gas evacuation system is shown in
Also in gas flow communication with the interior of the storage compartment 30, including the holding compartment 41, is a valve arrangement 104 that also is mounted at the rear wall 38 of the external housing 31. The valve arrangement 104 can comprise any type of valve known to those of ordinary skill in the art that is capable of functioning in an open state wherein gases from outside the interior of the storage compartment 30 can be admitted through the valve arrangement to the interior of the storage compartment and a closed state wherein gases from outside the interior of the storage compartment 30 are prevented from being admitted to the interior of the storage compartment through the valve arrangement. For example, the valve arrangement 104 can comprise a solenoid operated valve in the nature of a pressure release valve.
In one aspect, the storage compartment 30 can function so that the gas evacuation system 102 can be selectively placed in an active state and the valve arrangement 104 selectively placed in a closed state, whereby gases will be removed from the interior of the storage compartment 30 and the pressure within the interior of the holding compartment 41 reduced to a selected pressure less than the pressure outside the interior of the storage compartment when the interior of the storage compartment is otherwise sealed off from the admittance of gases from outside the storage compartment. When the storage compartment 30 functions in this manner, the articles stored in the holding compartment 41 will be stored under vacuum wherein less oxygen will be available to react with the stored articles.
The gas evacuation system 102, additionally, can be selectively placed in an idle state and the valve arrangement 104 can be selectively, concurrently placed in an open state when the interior of the storage compartment 30 is at a pressure below the pressure outside the interior of the storage compartment as described in the preceding paragraph. In that case, the gases admitted to the interior of the holding compartment 41 through the valve arrangement 104 will cause the pressure within the interior of the storage compartment to increase so that the pressure within the interior of the storage compartment and the pressure outside the interior of the storage compartment will be substantially equalized. This makes it more convenient to access the articles within the holding compartment.
In another aspect, the gas evacuation system 102 can be selectively placed in an intermittent active state following the reduction of the pressure in the holding compartment 41 to a selected pressure as described above and the valve arrangement 104 placed in a closed state. In this case, additional gases are intermittently removed from the interior of the holding compartment 41 and the pressure within the interior of the holding compartment is maintained below the pressure at the outside of the storage compartment and the conditions of a vacuum preserved. Such additional gases can be generated, for example, by the articles, such as foodstuffs, stored within the holding compartment. In a particular instance, the additional gases can comprise ethylene gas given off by fruits and vegetables stored in the holding compartment 41.
In addition to functioning as a vacuum compartment as described in the several immediately preceding paragraphs, the storage compartment 30 can function as a crisper for fruits and vegetables for example. In that case, the gas evacuation system 102 is selectively placed in an active state and the valve arrangement 104 placed in an open state, whereby the gases admitted to the interior of the holding compartment 41 through the valve arrangement 104 are ventilated through the interior of the storage compartment. The ventilation can provide a variety of salutary effects. For example, humidity can build up in the storage compartment 30 and the excess humidity can be removed by the gas evacuation system 102 while fresh air is admitted to the storage compartment through the valve arrangement 104.
When a gas evacuation system is provided, an electronic-control system, including a controller 106, can be provided for controlling the operations of the gas evacuation system 102 and the valve arrangement 104, as those operations have been described above. Any suitable type of controller known in the art may be used. The controller 106 can also be located at the rear wall 38 of the external enclosure 31 as shown in
The controller 106 also can be programmed so as to control the functioning of the gas evacuation system and valve arrangement for the purpose of intermittently removing additional gases from the interior of the storage compartment 30 after the compartment has been placed in the vacuum mode. The user interface 57 also provides for selectively inputting instructions to the controller 106 for placing each of the gas evacuation system 102 and the valve arrangement 104 in a non-functioning mode whereby the gas evacuation system and the valve arrangement are shut down. The controller 106, as well as some or all of the other components shown as mounted to rear wall 38 of the external enclosure 31, can be located elsewhere inside or outside the refrigerator 10.
Although not required, the operation of the storage compartment 30 can be supplemented by the inclusion of a latching mechanism for securing the holding compartment 41 to the external enclosure 31 when the coacting surfaces of the holding compartment and the external enclosure are brought together. An embodiment of such a latching mechanism is shown in the drawings in
The function of the latching mechanism is to secure the holding compartment 41 to the external enclosure 31 so as to initially maintain in place the seal 60 sealing off the interior of the holding compartment from the exterior of the external housing. Thus, the latching mechanism provides the initial force required to seal the holding compartment 41 and the external enclosure 31 together whereby gases are prevented from entering the holding compartment interior. As a result, when the gas evacuation system 102 is in an active state and the valve arrangement 104 is in a closed state, the pressure within the interior of the holding compartment 41 can be reduced to a selected pressure less than the pressure at the exterior of the external enclosure 31. The latching mechanism also can function in a manner so as to be inoperative to secure the holding compartment 41 to the external enclosure 31 when the pressure differential between the pressure within the interior of the holding compartment and the pressure at the exterior of the external enclosure is adequate to prevent the holding compartment from becoming disengaged from the external enclosure so as to prevent opening of the seal between the holding compartment 41 and the external enclosure 31. As a result, when one wishes to access the interior of the holding compartment 41 and the interior of the holding compartment is at a reduced pressure, it is only necessary to allow gas to enter the holding compartment through the valve arrangement 104 so as to equalize the pressure within the holding compartment and the pressure at the exterior of the external enclosure. And it is not necessary to wait for the latching mechanism to first be freed.
As noted, the latching mechanism is provided for securing the holding compartment 41 and the external enclosure 31 together when the coacting surfaces 40 and 33 of the holding compartment and the external enclosure, respectively, are first brought together. As a result, the coacting surfaces along with the seal 60 positioned between the coacting surfaces, all come into tight engagement, whereby the coacting surfaces of the holding compartment and the external enclosure are prevented from disengaging and allowing gases from outside the interior of the holding compartment to enter the interior of the holding compartment. The latching mechanism functions so as to be disabled from securing the holding compartment 41 and the external enclosure 31 together when the gas evacuation system 102 has removed sufficient gas from the interior portion of the holding compartment to establish a pressure differential between the interior portion of the holding compartment and the exterior of the external enclosure adequate to maintain the drawer and the external enclosure secured together
In the embodiment shown in the accompanying drawings, the latching mechanism for securing together the external housing 31 and the holding compartment 41 when the coacting surfaces 40 and 33 of the holding compartment and the external housing, respectively, are brought together in a sealing relationship with the seal 60 comprises a fixed retaining element 82 mounted at one of the external enclosure and the holding compartment and a movable latching element 80 mounted at the other one of the external enclosure and the holding compartment. The movable latching element 80 is movable between a position where it is free of the fixed retaining element 82 and a position where it is latched to the fixed retaining element. In the embodiment shown in the drawings, the fixed retaining element 82 is mounted at the holding compartment 41 and the movable latching element 80 is mounted at the external enclosure 31. More specifically, in that embodiment, the fixed retaining element 82 is mounted at the first component 50 of the sliding rail system and the movable latching component 80 is mounted at the second component 52 of the sliding rail system.
The movable latching element comprises a hook-shaped element 86 in which is located an opening 87 as best seen in
The movable latching element 80 also includes a driving arrangement that is operatively associated with the hook-shaped element 86 for moving the hook-shaped element between the position where the hook-shaped element is free of the fixed retaining element 82 and the position where the hook-shaped element is latched to the fixed retaining element. The hook-shaped element 86 and the driving arrangement for the hook-shaped element are contained within housing 81 of the movable latching mechanism 80. The driving arrangement includes a motor 98 that is mounted to the inside of the housing 81 and is behind the hook-shaped element 86 as viewed in
The movement of the hook-shaped element between the free and latched positions is abetted by a fixed pin 90 attached to the housing 81 and located in a guide slot 89 in the hook-shaped element 86 together with a pin 88 attached to the hook-shaped element 86 and located in a slot 85 in the housing 81. More specifically, when the hook-shaped element moves between the free position of
A flange 93 is attached to the cam 91 so as to rotate with the cam, the flange having two contact points 94 and 95. Contact point 95 is adapted to contact a control switch 100 when the hook-shaped element 86 is in the position free of the fixed retaining element and the other contact point 94 is adapted to contact the control switch when the hook-shaped element is latched to the fixed retaining element. The control switch controls the operation of the motor 98.
The interaction between the latching mechanism and the controller 106 is as follows. When the holding compartment 41 is contained within the external enclosure 31, and the coacting surfaces of the holding compartment and the external enclosure, 40 and 33, respectively, are brought together, and a user initiates the vacuum mode through the user interface 57, the controller 106 activates the latching mechanism by supplying power to the motor 98 whereupon the motor drive shaft is rotated so as to rotate the cam 91 in the opening 87 of the hook-shaped element 86. Initially at this point, the hook-shaped element 86 is in the attitude shown in
When the hook-shaped element 86 is in the position shown in
The application of the latching mechanism is not limited to a storage compartment comprising an external enclosure and a holding compartment as described above, but the latching mechanism can also be utilized with other structures comprising a storage compartment. For example, the seal can be used to secure a first component and a second component of a storage compartment together, the first component and second component being movable relative to one another. 29. In that case, the latching mechanism would comprise a fixed retaining element mounted at one of the first component and the second component and a movable latching element mounted at the other one of the first component and the second component. The movable latching element would comprise a hook-shaped element in which is located an opening, and the hook-shaped element would be movable between a position where the hook-shaped element is free of the fixed retaining element and a position where the hook-shaped element is latched to the fixed retaining element. A driving arrangement would be operatively associated with the hook-shaped element for moving the hook-shaped element between a position where the hook-shaped element is free of the fixed retaining element and a position where the hook-shaped element is latched to the fixed retaining element. The driving arrangement would include a motor with a drive shaft attached to a cam located in the opening in the hook-shaped element so as to rotate the cam within the opening in the hook-shaped element and cause the hook-shaped element to move between the position where hook-shaped element is free of the fixed retaining element and the position where the hook-shaped element is latched to the fixed retaining element. In one embodiment, the latching mechanism would include a fixed pin located in a guide slot in the hook-shaped element, the guide slot having a configuration such that the fixed pin and the guide slot cooperatively assist in causing the hook-shaped element to move between the position where it is free of the fixed retaining element and the position where it is latched to the fixed retaining element. In another embodiment, a flange could be attached to the cam so as to rotate with the cam, the flange having two contact points, one contact point adapted to contact a control switch when the hook-shaped element is in the position free of the fixed retaining element and the other contact point adapted to contact the control switch when the hook-shaped element is latched to the fixed retaining element.