The present invention related to a storage component disassembly tooling and a method of disassembling a storage component.
In the prior art, a process cartridge is provided, which is detachably mounted in an electrophotographic imaging device with an electrical contact. It includes: a storage component, which can store related parameter information such as a model number and the number of printed pages of the process cartridge and can be in electrical contact with the electrical contact to establish a communication connection with the electrophotographic imaging device; and a storage component mounting bracket for mounting the storage component. Specifically, in the process cartridge, the storage component is adhered to the storage component mounting bracket by epoxy resin glue, contact parts of the storage component and the storage component mounting bracket are all substantially covered by the epoxy resin glue, and after the epoxy resin glue is cured, the storage component is very firmly adhered to the storage component mounting bracket.
When the storage component needs to be removed and reused, since the storage component is firmly adhered to the storage component mounting bracket, it is not easy to remove the storage component. For this, there are currently no better methods and tools on the market.
Disclosed herein is a storage component disassembly tooling, for disassembling a storage component on a process cartridge, the process cartridge comprising a housing and a storage component mounting bracket on the housing for supporting the storage component, the storage component disassembly tooling comprising: a drilling portion, and a positioning portion; wherein the positioning portion is configured to position the storage component disassembly tooling on the housing of the process cartridge, and the drilling portion is configured to move relative to the positioning portion to destroy at least a part of the storage component mounting bracket.
In an aspect, the drilling portion comprises a cutting portion having a cutter edge, and the cutting portion is configured to destroy the part of the storage component mounting bracket using the cutter edge.
In an aspect, the cutter edge is configured to destroy the part of the storage component mounting bracket by cutting into the storage component mounting bracket in a non-rotating posture.
In an aspect, the drilling portion further comprises a squeezing portion configured to push the storage component out of the storage component mounting bracket.
In an aspect, the cutter edge has a cutter tip, and the cutter tip and the squeezing portion are transitioned by an inclined surface.
In an aspect, the storage component mounting bracket comprises a support portion for supporting the storage component, and when the storage component disassembly tooling is positioned on the process cartridge, at least a part of the squeezing portion is located on a downstream side of the support portion along an arrangement direction of the support portion and the storage component when viewed along a direction perpendicular to a thickness direction of the storage component.
In an aspect, the positioning portion further comprises a bonding portion configured to bond to the housing of the process cartridge, and configured to prevent the positioning portion from displacing relative to the housing when the cutting portion destroys the storage component mounting bracket.
In an aspect, the storage component disassembly tooling further comprises an opening, wherein when the storage component disassembly tooling is positioned on the housing, the storage component is exposed through the opening.
In an aspect, the storage component disassembly tooling further comprises a handle and an external thread connected to the handle, wherein the positioning portion comprises an internal thread matching the external thread, and wherein the handle, when rotated, is configured to cause the external thread to engage the internal thread and force the drilling portion to drill into the storage component mounting bracket.
In an aspect, the handle and the external thread are connected and form a T-shaped structure.
In an aspect, the storage component disassembly tooling further comprises a polishing portion having a rough surface for polishing the storage component removed from the process cartridge.
In order to make the objectives, technical solutions and technical effects of the embodiments of the present invention clearer, the technical solutions of the process cartridge of the present invention will be clearly and completely described below in conjunction with the drawings. Obviously, the described embodiments are only preferred embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, other embodiments obtained by those skilled in the art without creative efforts all belong to the scope of protection of the present invention.
In order to make the solution easy to understand, first of all, the process cartridge in the prior art will be briefly introduced. As shown in
Structure of Process Cartridge
As shown in
The housing 230 supports a photosensitive drum (not shown) that can form an image.
The storage component mounting bracket 220 is provided on a side of the housing 230 in a longitudinal direction. The storage component mounting bracket 220 includes: an accommodating portion 222 for accommodating the storage component 215; limiting portions 221, wherein a pair of limiting portions 221 are located on an upper side of the storage component 215 and are oppositely disposed on both sides of the storage component 215 in the left-right direction; a supporting portion 223 that is located on a lower side of the storage component 215 and can be used to support the storage component 215; and grooves 224, wherein a pair of grooves 224 are located on a lower side of the supporting portion 223 and are adjacently disposed in the left-right direction. Generally, the storage component mounting bracket 220 is made of ABS or HIPS resin material. It has general mechanical properties, and general material hardness and rigidity. When it is cut or pried with a material with higher hardness and rigidity, the structure can be destroyed.
The storage component 215 can store related parameter information such as a model number and the number of printed pages of the process cartridge. The storage component 215 is mounted in the accommodating portion 222 in a matching manner, and at the same time, is limited by the supporting portion 223 and the limiting portions 221 to prevent the storage component 215 from moving in the up-down direction. The storage component 215 includes a front surface 215a and a back surface 215b opposite to the front surface 215a. The front surface 215a is provided with an electrical contact point. The electrical contact point can be in electrical contact with the electrical contact to establish a communication connection with the electrophotographic imaging device. The back surface 215b is adhered to the supporting portion 223 by an adhesive such as epoxy resin glue. Under the limitation of the above structure, the storage component 215 is fixed in the storage component mounting bracket 220.
Structure of Storage Component Disassembly Tooling
As shown in
The storage component disassembly tooling 210 includes a support portion 211. It is preferably a long handle shape, which is convenient for a user to grasp.
The storage component disassembly tooling 210 further includes a prying portion 214. Preferably, the prying portion 214 includes a cutting portion 213, and a cutter edge is provided on the cutting portion 213. The prying portion 214 is disposed at one end of the support portion 211 in the longitudinal direction and extends outward from the support portion 211 in a direction intersecting the longitudinal direction of the support portion 211. The extending direction of the prying portion 214 is approximately the same as the extending direction of the cutting portion 213. The storage component disassembly tooling 210 in this embodiment adopts a design with one prying portion 214. The one prying portion 214 can be inserted into any one of the grooves 224 on the storage component mounting bracket 220. When the storage component disassembly tooling 210 is used to disassemble the storage component 215, on the one hand, the prying portion 214 applies a prying force on one side of the storage component mounting bracket 220 in the left-right direction, and at the same time, the arrangement of the cutting portion 213 can ensure that the prying portion 214 cuts the resin material at the storage component mounting bracket 220 during the prying process. Since there is a process of cutting the resin at the storage component mounting bracket 220 during the prying process, the storage component mounting bracket 220 can be gently pried, which can avoid the occurrence of stress concentration in the storage component mounting bracket 220 and the storage component 215 during the prying process, causing the storage component 215 to collapse and fly. On the other hand, the prying portion 214 applies the prying force on the one side of the storage component mounting bracket 220 in the left-right direction, and the other side of the storage component mounting bracket 220 is not pried up but is still adhered to the storage component mounting bracket 220, because the storage component mounting bracket 220 receives force on only one side in the left-right direction. The storage component 215 is pried from a single side of the storage component 215 by the prying portion 214. Therefore, the prying process described above is smooth. Further, in order to ensure that the prying portion 214 can be inserted into the groove 224 and make the cutting portion 213 have sufficient cutting performance and mechanical strength, in the extending direction of the cutting portion 213, the cutting portion 213 has a length L2, preferably, L2≥1.5 mm. In addition, the cutting portion 213 has a height H, preferably, 1 mm≤H≤3.5 mm, and the cutting portion 213 has a width S, preferably, 1 mm≤S≤3 mm. Further, a length L1 of the support portion 211 is greater than the length L2 of the cutting portion 213. Therefore, the longer the arm of force of the support portion 211 is, the smaller the required torque is, which makes it more labor-saving when the storage component disassembly tooling 210 is used to disassemble the storage component 215. Further, preferably, 10L2≤L1≤30L2. When L1<10L2, the support portion 211 is too short to be grasped. When L1≥30L2, the support portion 211 is too long, the material waste is large, and the production cost is high. Therefore, in consideration of graspability and economy, the storage component disassembly tooling 210 of this embodiment is preferably the solution of 10L2≤L1≤30L2. The cutting portion 213 includes a first side cutter edge 213a, a second side cutter edge 213b, and a cutter tip 213c formed by the first side cutter edge 213a and the second side cutter edge 213b intersecting at an angle α. When viewed along the extending direction of the cutting portion 213, the cutting portion 213 is generally configured to be V-shaped. Further, 30°≤α≤150°. When α<30°, the cutting portion 213 has insufficient mechanical strength and is easily damaged. When α≥150°, the cutting performance of the cutting portion 213 is insufficient, and it is difficult to disassemble the storage component 215. Therefore, 30°≥α≥150° is preferable, and at this time, the cutting portion 213 has both mechanical strength and cutting performance. Optionally, the prying portion 214 may not be provided with a cutting portion 213. For example, the prying portion 214 may also be provided as a structure having an arc portion, wave point portion or flat portion in (a), (b) and (c) of
The storage component disassembly tooling 210 further includes a fulcrum portion 216, which is approximately configured in an arc shape. The fulcrum portion 216 connects the support portion 211 and the prying portion 214. When the storage component disassembly tooling 210 is used to disassemble the storage component 215, both the support portion 211 and the prying portion 214 can rotate around the fulcrum portion 216. The fulcrum portion 216 is configured as a positioning portion for positioning the storage component disassembly tooling 210. When the cutting portion 216 of the storage component disassembly tooling 210 starts to apply force to the storage component mounting bracket 220, the fulcrum portion 216 serves as a positioning portion to position the storage component disassembly tooling 210 relative to the storage component mounting bracket 220 so as to pry up the storage component mounting bracket.
Further, the storage component disassembly tooling 210 further includes a plurality of hole portions 217 arranged and extending along the longitudinal direction of the support portion 211, and the hole portion 217 is a through hole formed on the support portion 211. The plurality of hole portions 217 are provided on the support portion, so that the material consumption is reduced, and the production cost of the storage component disassembly tooling is reduced. Moreover, since the weight of the storage component disassembly tooling is reduced, the transportation cost of the storage component disassembly tooling is also reduced.
Further, the storage component disassembly tooling 210 further includes a polishing portion 212, which is provided at the other end of the support portion 211 in the longitudinal direction. The polishing portion 212 is a plurality of protrusions formed on the support portion 211 and can be used to clean and polish the disassembled storage component 215 adhered with epoxy resin glue.
As shown in
As shown in
Next, Embodiment 4 of the present invention will be described in detail. A process cartridge in this embodiment has a structure different from those of the above embodiments. First of all, the structure of the process cartridge in this embodiment will be briefly introduced below.
Structure of Process Cartridge
As shown in
Structure of Storage Component Disassembly Tooling
As shown in
The storage component disassembly tooling 100 includes a support portion 70. The support portion 70 has a handle 71 and a drilling portion supporting portion 72 extending outward from an approximately central position of the handle 71 in the longitudinal direction. The handle 71 and the drilling portion supporting portion 72 are approximately T-shaped. An external thread 73 is formed on an outer surface of the drilling portion supporting portion 72, and a connecting hole 74 is further provided at an extending end of the drilling portion supporting portion 72. The connecting hole 74 is configured to have a non-circular outer shape.
The storage component disassembly tooling 100 further includes a drilling portion 80. One end of the drilling portion 80 in the longitudinal direction is provided with a connecting shaft 81, and the connecting shaft 81 is in interference fit with the connecting hole 74. Further, the connecting shaft 81 is configured to have a non-circular outer shape and can be in fit with the connecting hole 74 that is also configured to have the non-circular outer shape. By adopting the connecting shaft 81 configured to have the non-circular outer shape, the anti-torsion ability is improved, and the drilling portion 80 is prevented from slipping during rotation, thereby improving the connection stability of the drilling portion 80. The other end of the drilling portion 80 in the longitudinal direction is further provided with a cutting portion 86. The cutting portion 86 includes a cutter edge portion, and the cutter edge portion includes a first side cutter edge 83, a second side cutter edge 84, and a cutter edge 85 formed by the first side cutter edge 83 and the second side cutter edge 84 intersecting at an angle. The drilling portion 80 is drilled into the storage component mounting bracket 20 through the contact between the cutter edge portion and the storage component mounting bracket 20. Further, the angle formed by the first side cutter edge 83 and the second side cutter edge 84 is an acute angle. This configuration allows the user to cut into the storage component mounting bracket 20 with a small force, saving time and labor. Optionally, it may also be an obtuse angle. Further, the drilling portion 80 also includes a cylindrical portion 82 connected between the connecting shaft 81 and the cutting portion 86. A smooth transition is adopted between the cylindrical portion 82 and the cutter edge 85. This configuration is beneficial for the cylindrical portion 82 to smoothly enter the storage component mounting bracket 20 after the cutter edge 85 is completely cut into the storage component mounting bracket 20. The groove 24 of the storage component mounting bracket 20 has a height h in the up-down direction. A diameter of the cylindrical portion 82 is greater than the height h of the groove 24, so that when the cylindrical portion 82 enters the storage component mounting bracket 20, the cylindrical portion 82 can press the storage component mounting bracket 20 up and down to deform it. Preferably, in order to save the cost and ensure the drilling effect of the drilling portion 80, the drilling portion 80 is made of metal material, and the support portion 70 is made of plastic material. Optionally, the cylindrical portion 82 on the drilling portion 80 can also be configured in other shapes, such as elliptical, triangular, polygonal, etc., as long as its external structure can squeeze the storage component mounting bracket 20 to deform it, thereby making the storage component 15 be pushed out from the storage component mounting bracket 20. The above cylindrical portion of the drilling portion 80 and its modification are referred to as a squeezing portion of the drilling portion 80. When projected along the drilling direction of the drilling portion 80, a trajectory is described by an outer shape of the squeezing portion during the rotation thereof. Preferably, a height h of the maximum dimension of the contour described by the trajectory is greater than the height h of the groove 24. Optionally, the height h of the maximum dimension of the contour described by the trajectory may also be less than or equal to the height h of the groove 24. At this time, the highest point of the contour described by the trajectory is higher than the supporting portion 23 of the storage component mounting bracket 20 supporting the storage component 15, and the technical effect of pushing out the storage component 15 can also be achieved. In summary, the drilling portion 80 drills into the storage component mounting bracket 20 in a manner of destroying at least a part of the storage component mounting bracket 20, and the squeezing portion of the drilling portion 80 can squeeze a part of the storage component mounting bracket 20 to deform it so as to push out the storage component 15.
Further, the storage component disassembly tooling 100 further includes a positioning portion 90. The positioning portion 90 includes a positioning portion main body 99, which is generally configured as a flat plate, and an internal thread 97 provided on the positioning portion main body 99. Through the engagement of the internal thread 97 and the external thread 73, the support portion 70 can move relative to the positioning portion 90, and the drilling portion 80 connected to the support portion 70 can move relative to the positioning portion 90 as the amount of engagement between the internal thread 97 and the external thread 73 changes. Further, the positioning portion 90 further includes a first protruding portion 91, a second protruding portion 92, a third protruding portion 93, a fourth protruding portion 94, a fifth protruding portion 95 and a bonding portion 96 that extend outward from the positioning portion main body 99 and are disposed at intervals. The bonding portion 96 includes a first bonding portion 96a extending outward from the positioning portion main body 99 and a second bonding portion 96b located at a free end of the first bonding portion 96a. A plane where the first bonding portion 96a is located is perpendicular to a plane where the second bonding portion 96b is located. The first protruding portion 91, the second protruding portion 92, the third protruding portion 93, the fourth protruding portion 94, and the fifth protruding portion 95 can be correspondingly inserted into the first slot 1, the second slot 2, the third slot 3, the fourth slot 4, and the fifth slot 5 on the protective cover 10, respectively. The first bonding portion 96a can abut against the first bonded portion 6a of the protective cover 10, and the second bonding portion 96b can abut against the second bonded portion 6b of the protective cover 10. When the storage component 15 is disassembled, force is applied so that the support portion 70 and the drilling portion 80 gradually approach the protective cover 10. At the same time, it will also generate a reaction force away from the protective cover 10. By providing the first protruding portion 91, the second protruding portion 92, the third protruding portion 93, the fourth protruding portion 94, the fifth protruding portion 95, and the bonding portion 96 on the positioning portion 90, the first protruding portion 91, the second protruding portion 92, the third protruding portion 93, the fourth protruding portion 94, the fifth protruding portion 95, and the bonding portion 96 abut against the first slot 1, the second slot 2, the third slot 3, the fourth slot 4, the fifth slot 5, and the bonded portion 6 on the protective cover 10, respectively, and the positioning portion 90 is limited in the left-right, up-down and front-rear directions. Thus, when the storage component disassembly tooling 100 is operated, the storage component disassembly tooling 100 will not be displaced, which improves the disassembly precision and disassembly stability and is safer. Optionally, the number of protruding portions or bonding portions on the positioning portion 90 is not limited to 6 in this embodiment. It may also be 1 to 5 or more than 6. Moreover, the positioning structure of the positioning portion 90 is not limited to the above structure, and can be specifically set according to the structure of the process cartridge. Further, the positioning portion further includes an opening 98. The opening 98 is a through hole formed on the positioning portion main body 99. After the storage component disassembly tooling 100 is mounted on the process cartridge, the storage component 15 is exposed through the opening 98. When the storage component 15 is disassembled, the opening 98 exposes the storage component 15 when the positioning portion 90 is mounted on the process cartridge. The disassembly state of the storage component 15 can be easily observed through the opening 98, and the storage component 15 can be taken out through the opening 98 after the disassembly is completed. Optionally, the opening 98 may not be provided on the positioning portion 90. The positioning portion 90 can be made of a transparent material, and the disassembly state of the storage component 15 can also be observed in real time.
Process of assembling and mounting storage component disassembly tooling onto process cartridge
As shown in
Step 1: Mount the connecting shaft 81 of the drilling portion 80 onto the connecting hole 74 of the support portion 70 correspondingly.
Step 2: Then, mount the external thread 73 of the support portion 70 onto the internal thread 97 of the positioning portion 90.
However, the above assembly steps of the storage component disassembly tooling 100 are not limited. It is also possible that the operation of step 2 is first performed, and then the operation of step 1 is performed. Both of the two different assembly sequences can correctly assemble the storage component disassembly tooling 100. Optionally, the drilling portion 80 and the support portion 70 may also be manufactured in an integrated manner, thereby eliminating the need to perform the first step. In the process of mounting the support portion 70 to the positioning portion 90, the engagement amount of the external thread 73 and the internal thread 97 should not be too large, so as to avoid interference between the drilling portion 80 and the protective cover 10 during the process of mounting the storage component disassembly tooling 100 onto the process cartridge, causing the storage component disassembly tooling 100 to fail to be mounted normally.
As shown in
Firstly, the support portion 70 of the assembled storage component disassembly tooling 100 is held. Secondly, the first protruding portion 91, the second protruding portion 92, the third protruding portion 93, the fourth protruding portion 94, and the fifth protruding portion 95 of the positioning portion 90 are correspondingly inserted into the first slot 1, the second slot 2, the third slot 3, the fourth slot 4, and the fifth slot 5 of the protective cover 10, respectively, and the bonding portion 96 is correspondingly mounted onto the bonded portion 6. So far, the storage component disassembly tooling 100 has been correctly mounted onto the process cartridge.
As a preferred embodiment, the drilling portion 80 is drilled into the storage component mounting bracket 20 by means of cutting while rotating, so that the drilling portion 80 can be easily and quickly drilled into the storage component mounting bracket 20. Optionally, the drilling portion 80 may also be configured to be drilled without rotation. For example, a screw structure can be provided on the drilling portion supporting portion connected to the drilling portion 80, and another screw that matches the screw structure can be provided at the same time. A handle is connected to the screw, and the handle is rotated to rotate the screw. Through the rotation of the screw, the drilled portion 80 can be driven to be drilled into the storage component mounting bracket 20. In addition, it is also possible that a rack structure is provided on the drilling portion supporting portion of the drilling portion 80, and another screw or gear that matches the rack structure is provided at the same time. By rotating the screw or gear, the drilling portion 80 can be driven to be drilled into the storage component mounting bracket 20 in a non-rotating posture.
Embodiment 5 of the present invention will be specifically described below. A process cartridge of this embodiment has the same structure as that of Embodiment 1. The structure of the process cartridge that has been described will not be repeated here. As shown in
Structure of Storage Component Disassembly Tooling
The storage component disassembly tooling 300 of this embodiment has generally the same basic structure as that of Embodiment 4 described above. The difference is that parts of the positioning portion 390 and the support portion 370 of the storage component disassembly tooling 300 of this embodiment are different in structure. Specifically, the positioning portion 390 of the storage component disassembly tooling 300 of this embodiment includes protruding portions 391, 392, and 393, wherein the protruding portions 391, 392, and 393 can be correspondingly inserted into the slot portions 301, 302, and 303 on the process cartridge, respectively, and thus the storage component disassembly tooling 300 can be positioned on the process cartridge. The free end of the protruding portion 372 of the support portion 370 is further provided with a hole portion 375. The storage component disassembly tooling 300 further includes a limiting portion 360 mounted on the hole portion 375. The limiting portion 360 is preferably a screw. Optionally, the limiting portion 360 may also be a pin, a key or the like. As shown in (a) and (b) of
Process of Assembling Storage Component Disassembly Tooling
The process of assembling the storage component disassembly tooling 300 of this embodiment is substantially the same as that of Embodiment 4 described above. The difference is that after the storage component disassembly tooling of Embodiment 4 described above is assembled, the storage component disassembly tooling 300 of this embodiment mounts the limiting portion 360 onto the hole portion 375 of the support portion 370 exposed through the opening 398 of the positioning portion 390. So far, the process of assembling the storage component disassembly tooling 300 has been completed.
Embodiment 6 of the present invention is introduced below. In order to better describe the working principle of the present invention, a direction of mounting a process cartridge into an electrophotographic imaging device is limited to a mounting direction P, and an extending direction of a developing roller in the process cartridge is set to an axial direction.
A process cartridge set of the present invention includes a process cartridge and a storage component disassembly tooling. The process cartridge of the present invention can be configured as shown in
In the process cartridge of the present invention, the storage component mounting bracket 520 is configured to allow the storage component to be detachably mounted therein, and is preferably configured into a structure as shown in
When the process cartridge set of the present invention is sold to users, the process cartridge therein is only provided with the storage component mounting bracket 520 capable of accommodating a storage component, but is not provided with the storage component. When the user needs to mount the process cartridge in the process cartridge set of the present invention into an electrophotographic imaging device, it needs to use the storage component disassembly tooling in the process cartridge set to take out the storage component of the old process cartridge in the prior art, and then mount it to a storage component mounting bracket 520 of a new process cartridge before loading it into the electrophotographic imaging device.
Therefore, the storage component disassembly tooling in the process cartridge set of the present invention is designed so that it is convenient for the user to take out the storage component from the old process cartridge. It is preferably configured as a crowbar 400 as shown in
How the process cartridge set of the present invention works will be described in detail below in conjunction with a specific embodiment. The crowbar 400 in the preferred embodiment of the process cartridge and storage component disassembly tooling of the present invention will be used as an example to describe in detail how the process cartridge set of the present invention works. See
After the user purchases the process cartridge set of the present invention, the old process cartridge that has been used can be taken out from the electrophotographic imaging device, and then, the crowbar 400 of the storage component disassembly tooling can be taken out from the process cartridge set of the present invention. It should be noted that the old process cartridge is generally configured to have a structure as shown in
As described above, after the user takes out the old process cartridge from the electrophotographic imaging device, the grasping portion 411 of the crowbar 400 is held by hand, and the opening 414 of the crowbar 400 is aligned with the accommodating portion 33 of the old process cartridge. Specifically, it can be inserted into the accommodating portion 33 of the old process cartridge as shown in
In the present invention, the user can easily mount the storage component 32 removed from the old process cartridge into the new process cartridge. A detachable storage component frame 525 is provided in the new process cartridge. The storage component frame 525 is configured to be detachably mounted to the rear end of the process cartridge. An accommodating slot 527 capable of accommodating the storage component 32 is provided on the storage component frame 525. Moreover, buckles 528 are further provided on the storage component frame 525. When the storage component frame 525 needs to be taken out from the process cartridge, the user only needs to gently move the buckles 528 so as to move two buckles 528 closer to each other, and the storage component frame 525 can be taken out from the rear end of the process cartridge. Then, the user mounts the storage component 32 in the accommodating slot 527. After the storage component frame 525 mounted with the storage component 32 is mounted at the rear end of the process cartridge again, the process cartridge can be normally mounted into the electrophotographic imaging device. As a simple modification of the process cartridge of the present invention, the detachably mounted storage component frame may not be provided, as long as the storage component can be easily mounted into or taken out from the housing.
The process cartridge set of the present invention can conveniently allow users to take out the storage component in the old process cartridge, and then the old storage component taken out is mounted into a new process cartridge. The process cartridge equipped with the old storage component can be recognized by the imaging device again, thereby smoothly completing the printing task. The process cartridge set of the present invention can effectively use the storage component in the old process cartridge and save the user's cost of using the new process cartridge. At the same time, the storage component disassembly tooling in the process cartridge set can also be used as other tools after the storage component of the old process cartridge is taken out, improving the customer's use experience. Therefore, the process cartridge set of the present invention is simple in structure, convenient to use, economical and practical, and can greatly save the customer's use cost. Moreover, it realizes recycling of parts of the old process cartridge, which does not cause waste of old storage components, and saves social resources. At the same time, when the process cartridge set of the present invention is sold as a commodity, the customers can realize the self-operation and recycling of the old process cartridge, which provides the customers with a kind of DIY fun and increases the interest of the users in the use process.
In the process cartridge set of the present invention, a preferred embodiment of the storage component disassembly tooling is a crowbar 400, However, optionally, the storage component disassembly tooling may also be configured as other structures, such as pliers 500 as shown in
When the user needs to use the pliers 500 to take out the storage component 32 from the old process cartridge 30, the first grasping portion 511a and the second grasping portion 511b of the pliers 500 are held. First, the first jaw 512 and the second jaw 513 are caused to be in the open state, and the first jaw 512 in the open state is inserted into the accommodating portion 33 of the old process cartridge. The first jaw 512 is inserted into the exposed part of the accommodating portion 33 of the old process cartridge that exposes the contact of the storage component, and the first jaw 512 is caused to abut against the bottom end of the corresponding upper housing 34a in the accommodating portion 33. Then, the user applies force to the first grasping portion 511a and the second grasping portion 511b in a direction of G as shown in
The storage component disassembly tooling in the process cartridge set of the present invention may also be configured as second pliers 600 as shown in
With the second pliers in this embodiment, the user can only destroy part of the structure of the accommodating portion without destroying the structure of other parts of the housing, and the accommodating portion of the process cartridge is not destroyed, so that the developer will not leak out and pollute the environment. Moreover, the box process cartridge can be further recycled, so that resources can be effectively used. The removed old storage component is directly inserted into an accommodating portion of a new process cartridge, and then the new process cartridge mounted with the old storage component is mounted into the electrophotographic imaging device to complete a normal printing function.
Method of Disassembling Storage Component Using Storage Component Disassembly Tooling
In Embodiment 1, as shown in
The disassembly methods of Embodiment 2 and Embodiment 3 are substantially the same as that of Embodiment 1, and will not be repeated here.
In Embodiment 4, as shown in
The disassembly method of Embodiment 5 is substantially the same as that of Embodiment 4 described above, and will not be repeated here.
In summary, the method of disassembling the storage component using the storage component disassembly tooling of the present invention includes at least the following steps:
step 1: a step of causing the cutting portion to enter the groove of the storage component mounting bracket;
step 2: a step of applying force to the support portion to make the cutting portion squeeze the storage component mounting bracket; and
step 3: a step of pushing out the storage component from the storage component mounting bracket.
Beneficial Effects of the Invention
The storage component disassembly tooling of the present invention cuts into or squeezes the storage component mounting bracket through the cutting portion, so that the storage component mounting bracket can be deformed, and the epoxy resin glue adhered on the storage component are stressed and then cracked, and thus the storage component can be pushed out. The storage component disassembly tooling provided by the present invention not only has simple operation, shortens the disassembly time of the storage component, improves the disassembly efficiency, and saves time and labor. Moreover, the storage component disassembly tooling has a relatively simple structure, and the manufacturing difficulty and manufacturing cost are relatively low.
It should be noted that the storage component disassembly tooling in each of Embodiments 1-5 provided by the present invention is drilled into the storage component mounting bracket so as to destroy a part of the plastic part of the storage component mounting bracket. Specifically, in Embodiments 1 to 3, it is drilled into the storage component by using the prying portion to cut into the storage component mounting bracket, so as to destroy the supporting portion in the storage component mounting bracket that supports the storage component. In Embodiments 4 and 5, it is drilled into the storage component mounting bracket by using the drilling portion similar to a drill, so as to destroy the supporting portion in the storage component mounting bracket that supports the storage component. The drilling manner should be understood as drilling at least a part of the storage component disassembly tooling into the plastic part of the storage component mounting bracket so as to destroy the plastic part. The prying portion and the drilling portion described above are summarized as the drilling portion of the storage component disassembly tooling that can be drilled into the plastic material of the storage component mounting bracket. Preferably, the drilling portion is drilled into the supporting portion of the storage component mounting bracket that supports the storage component so as to destroy the plastic material at the supporting portion, so that the storage component can be easily and quickly pushed out by the storage component disassembly tooling with good effect.
The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: the technical solutions set forth in the foregoing embodiments are still modified, or some of the technical features therein are equivalently replaced. Moreover, these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202022801759.3 | Nov 2020 | CN | national |
202120480125.4 | Mar 2021 | CN | national |
202110313368.3 | Mar 2021 | CN | national |
202110328405.8 | Mar 2021 | CN | national |
202110362533.4 | Apr 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
11061363 | Yan | Jul 2021 | B1 |
20040131383 | Fujita et al. | Jul 2004 | A1 |
20060171737 | Nishimura | Aug 2006 | A1 |
20070025760 | Williams | Feb 2007 | A1 |
20080003014 | Martin | Jan 2008 | A1 |
20080008494 | Martin | Jan 2008 | A1 |
20180095415 | Nishiyama et al. | Apr 2018 | A1 |
20190227480 | Fujiwara et al. | Jul 2019 | A1 |
20210240126 | Nagamine | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
201611427 | Oct 2010 | CN |
102012667 | Jul 2012 | CN |
202649676 | Jan 2013 | CN |
202649678 | Jan 2013 | CN |
204178129 | Feb 2015 | CN |
204719404 | Oct 2015 | CN |
205157983 | Apr 2016 | CN |
103293907 | Jun 2016 | CN |
205539943 | Aug 2016 | CN |
206249015 | Jun 2017 | CN |
207164470 | Mar 2018 | CN |
207326848 | May 2018 | CN |
108803289 | Nov 2018 | CN |
208689365 | Apr 2019 | CN |
208689369 | Apr 2019 | CN |
105629691 | Nov 2019 | CN |
209634055 | Nov 2019 | CN |
209657088 | Nov 2019 | CN |
210283620 | Apr 2020 | CN |
210666361 | Jun 2020 | CN |
210742681 | Jun 2020 | CN |
212256010 | Dec 2020 | CN |
112269306 | Jan 2021 | CN |
2000137375 | May 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20220171329 A1 | Jun 2022 | US |