The present invention relates to storage containers. More particularly, the present invention relates to storage containers especially useful for storing radioactive materials, such as plutonium in the form of oxides and salts, as well as in other forms.
Plutonium is a man-made radioactive element which is used as an explosive ingredient in nuclear weapons and as a fuel for nuclear reactors. It has the important nuclear property of being readily fissionable with neutrons and is available in relatively large quantities. Caution must be exercised in handling plutonium to avoid unintentional formation of critical mass. Plutonium in liquid solutions is more apt to become critical than solid plutonium so it is also very important to avoid the unintentional creation of a liquid solution. Since plutonium is considered to be highly carcinogenic, it is important that plutonium in any form be contained and not escapes into the surrounding environment where it can be inhaled or otherwise ingested by humans or other living things. Frequently, plutonium oxides and salts are in the form of powders which require very special handling to ensure that particles do not become suspended in the air and that liquid does not come into contact with the powders. Optionally, such containers are vented through high efficiency particulate filters.
The present invention relates to a storage container for radioactive materials and comprises a housing with a lid wherein the lid is locked to the housing by cam-projected bolts, which extend radially with respect to the axis of the housing. The radially projected bolts are driven by a central cam that is attached to the bolts with pin and slot couplings. A locking nut pivots the bolts in order to apply force to urge the lid against a seal having an axial sealing surface and to seal a seal having a radial sealing surface. A locking pin is provided to keep the locking bolts projected into an inwardly facing groove on the housing at the mouth of the housing as well as to keep the bolts in a position to apply pressure to the axial sealing surface.
Referring now to
Referring now primarily to
In the illustrated embodiment, pressing the inner ends 34, 36 and 38 of the locking bolts 20-22 is done by rotating a locking nut 60 that is mounted on course threads 62 of an axial bolt 64 that is non-rotatably retained in a recess 66 in the cover 14. Rotating the locking nut 60 advances the rotatable cam plate 50 in the direction of axis 18 toward the outer surface 15 of the lid 14. This cam plate thus serves as an axial force element that causes the top surfaces of the pins 40, 41 and 42 to be engaged by surfaces 70 at the top of arcuate cam slots 44, 46 and 48 and presses the inner end portions 34, 36 and 38 of the radially lock bolts 20, 21 and 22 downwardly to lift the outer end portions 30, 31 and 32 into engagement with the top surface 25 of the groove 24 at the mouth 26 of the housing 10. As the bolts 20, 21 and 22 rotate on the fulcrums 55, a resilient O-ring seal 87 is compressed and sealed against the bottom surface 88 of the lid 14 as it is compacted in the slot 89. A resilient radial O-ring seal 90 seals radially against the inner surface 91 of housing 12.
In order to bias the radial locking bolts 20-22 to the
A locking pin 100 having a pull ring 102 extends through the locking nut 60 and is received in an opening 104 in cam 50 to lock the locking nut 60 to the cam 50 after the locking bolts 20-22 have been pivoted to compress the O-ring seal 87.
A preferable configuration for the mouth 26 of the housing 12 is a separate rim 110, which has an annular flange 112 that is welded to the open end of the housing 12 as seen in
A filter 120 is placed in the lid 14 to trap particulates entrained in any fluid venting from the container 10.
In addition to the U-shaped handle 16, there is at least one grip handle 124 which projects from the side of the housing 10. Preferably, there are a plurality of grip handles 124.
The container 10 is made in different sizes, for example, 1 to 12 quart sizes and a 7 gallon size.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/772,543 filed Feb. 13, 2006.
Number | Date | Country | |
---|---|---|---|
60772543 | Feb 2006 | US |