This invention relates to a storage container, especially for use with liquids.
Food and drink products are known to deteriorate when in contact with air for an extended period. In particular, wine and oil, especially olive oil, are known to lose their flavour and to oxidise swiftly in the presence of air. Therefore, there is an underlying desire to keep air from coming into contact with liquids when they are being stored. Usually, when bottled wine or oil is opened it remains in its bottle and any air in the bottle remains in place, thereby contributing to the rancidification of oil and the oxidation of wine.
Additionally, once the contents of glass bottles has been used, the bottle is usually thrown away, although it can be recycled. Therefore, there is a desire to re-use bottles in order to reduce the amount of glass waste.
Accordingly, the present invention is directed to a storage device comprising a receptacle and a movable closure member, the closure member comprising a seal about its periphery, for positioning against the inside of the receptacle, and a valve within its periphery, wherein the closure member can be moved within the receptacle such that its periphery is substantially continually in contact with the internal surface of the receptacle, and wherein, when in an open position, the valve allows flow of fluid from within the receptacle through the valve, and when in a closed position, the valve prevents flow of liquid from within the receptacle, wherein the receptacle is substantially closed at its lower end.
The receptacle is substantially closed at its lower end such that the liquid can only pass through the upper end of the device. As such the only outlet is at the upper end of the device. The movable closure member allows one to provide a seal at whatever the liquid level is at within the receptacle. Additionally, the use of at least one valve in the device allows for the air to be removed from above the liquid as the closure member is moved towards its upper surface. Using a particular type of valve, the closure member can then be sealed to prevent the escape of liquid through the closure member, thereby allowing for a fluid impermeable seal to be established. Air and liquid can escape when the valve is in an open position but once the air is removed, the valve closes and the liquid cannot escape from the receptacle.
An advantage of the present invention is that it can be used as a refillable vessel. By having a central location for distributing liquids, such as oil, vinegar and/or wine, the present invention can be repeatedly filled as necessary, thereby reducing the reliance on glass bottles that are often thrown away. In such circumstances, the device creates a green alternative to the use of glass and/or disposable vessels.
Preferably, when the movable closure member is positioned at the top level of the liquid, it self-limits further motion towards the liquid and it cannot be moved any lower. Because the valve allows air to escape when in a close position, but it does not allow the passage of liquid through, when the closure member is positioned against the meniscus of the liquid, the air is able to escape but not the liquid. Therefore, the closure member cannot move any further down and is self-limited, or self-sealing, because the valve is locked. As liquid cannot be compressed, the valve is essentially acting against an incompressible body and so is limited in its movement. If any air is caught within the receptacle and below the movable closure member, it can be compressed and will either find its way to the valve and escape, or it will comprise a reduced volume and thereby be in contact with less liquid than it otherwise would have been.
Advantageously, the closure member comprises an adjustment section for adjusting the position of the closure member within the receptacle. The adjustment section may be permanently attached to the closure member or it may connect to the closure member only to change its position.
It is preferable that the adjustment section is integral with the closure member. The closure member may comprise an elongate member attached to the movable closure member for longitudinal movement within the receptacle. Thus, when the position of the elongate member is changed, the position of the closure member changes accordingly. This may create a piston and cylinder arrangement, or a plunger-like arrangement.
In an advantageous embodiment, the adjustment section comprises a conduit therethrough, thereby allowing fluid communication from within the receptacle, through the valve and through the adjustment section to outside the device. In such an arrangement, the adjustment section can allow the flow of the contents of the receptacle to pass through when the valve is open. This allows one to pour the liquid through the valve and subsequently through the adjustment section. As a result, the adjustment section and closure member do not need to be completely removed from the receptacle before the liquid is dispensed.
In a first embodiment, the movable closure member comprises an aperture and the valve comprises a blocking member that, in a closed position, is received within the aperture and closes the aperture to the passage of fluid. The valve may comprise a passage through which fluid can pass but that can be closed by way of a blocking member. The blocking member is able to move within the valve from an open position to a closed position.
Preferably, the blocking member comprises a float that, when it comes into contact with liquid contained within the receptacle, floats thereupon and blocks the aperture of the closure member. By having a float with a density lower than that of the liquid within the receptacle, when the float comes into contact with the liquid it will be raised towards the closure member as the closure member is moved towards the liquid. As the float raises, it can be moved into the fluid flow path through the valve, and it can close the aperture to the passage of fluid therethrough. As a result, the valve closes upon contacting the liquid. Additionally, the more that the closure member is forced towards the liquid, the tighter that the valve is closed more tightly, thereby increasing the self-limiting nature of the device.
More preferably, valve comprises a ball float. The use of a ball float allows for a practical seal to be created between the ball float and the aperture of the valve and it reduces the risk of the float adhering to the aperture as it might in other configurations.
It is advantageous that the float comprises a weight. The use of a weight or weighted portion within the float allows the float to pull away from the aperture and conduit when the valve is intended to be in an open position, especially when the receptacle is in an upright position. Liquid passing through the aperture of the valve may increase the likelihood of the float adhering to the aperture of the valve. Use of a weight within the float aids with disengaging the float when required.
In a preferred embodiment the aperture has tapered sides. The use of tapered sides to the aperture allows for a more reliable seal to be established. Additionally, the tapering provides a smoother flow of fluid through the closure member.
In a second embodiment the valve comprises a gas permeable membrane that is impermeable to liquid. The use of a selectively permeable membrane allows one to reduce the number of moving parts within the device. As the closure member is lowered, air is able to pass through the valve. However, once the valve is in contact with the liquid, it becomes self-limiting and cannot be lowered any further. An additional cap or closure device may be used to seal up the valve to further reduce the amount of air that can contact the liquid.
It is advantageous that the closure member is provided with perforations. This allows for the liquid contained in the receptacle to be able to pass through the closure member without needing to remove it first. Additionally, the use of perforations can act as a filter to remove sediment or particles from the liquid. Alternatively, or in addition, a separate filter may be attached to the closure member.
Preferably, the closure member is provided with a top membrane. An impermeable top membrane can be provided over the perforations of the closure member to prevent the passage of liquid through the closure member. This ensures that air can be cut-off from accessing the liquid in the receptacle through the perforations.
Advantageously, the membrane is flexible. The use of a flexible member to close the perforations allow them to be closed quickly and efficiently, thereby allowing easy opening and closing of the liquid passage through the closure member.
It may be preferably, for a secondary valve to be positioned above the first valve, and such a secondary valve may comprise silicone material. The use of a secondary valve above the first, which may be a duck-billed valve, further reduces the risk of ingress of air into the liquid and also reduces the risk of the device leaking when stored on its side.
It is advantageous that the closure member comprises a first portion and a second portion, rotatable relative to one another and each provided with a hole therethrough, wherein, when the holes are aligned, fluid communication is permitted between one side of the closure member and the other side thereof, and when the first portion and second portion are rotationally offset, fluid communication between one side of the closure member and the other side thereof is prohibited. Such an embodiment allows for the closure member to prevent the passage of liquid when in a closed position and to be rotated to an open position to permit the passage of liquid therethrough. This allows one to substantially open and close the storage device by rotation in addition to, or rather than, longitudinal motion.
Preferably, the device is provided with a top portion that fits onto and substantially closes the top of the receptacle. The use of a lid assists with locating the closure member within the device, particularly when the closure member is connected to an integral adjustment section that extends towards the top of the receptacle. Additionally, it provides protection to the closure member. Furthermore, it reduces the risk of the closure member being pushed down at an angle and getting stuck. The movement of the closure member may be concentric and centrally aligned to the top portion, which may be a lid, thereby improving reliability and making the device easier to operate.
Advantageously, fluid communication is allowed between the inside of the receptacle the outside of the top portion. This allows for the liquid to be poured through a conduit in the top portion without first needing to completely remove the closure member from within the receptacle.
It is desirable that the storage device is a decanter for storing wine, sparkling wine, vinegar, soft drinks and/or oil.
It is preferable that the valve of the device comprises a seat portion in which the float of the float valve rests when the receptacle is in an upright position and that wherein the seat protrudes extends beyond the lower surface of the closure member. With the seat member protruding from the closure member, it becomes easier to inspect and clean the valve and any float therein. Additionally, it allows for configurations that allow the liquid in the receptacle to be poured around the float when the liquid level in the receptacle is low.
Advantageously, the seat is provided with at least one aperture in its base and/or at least one aperture in its circumference. When in a substantially upright position, having an aperture in the base of the seat allows the fluid to ‘push’ the float into the aperture from the moment that the liquid level is sufficiently high. This allows the valve to be closed at the earliest opportunity because the float floats on the liquid as soon as it enters the base of the seat. This earliest opportunity may be when there is no further are below the sealing point and this the float contacts the liquid and floats on the surface thereof to close the aperture. Where the seat has at least one aperture in its circumference, this can be useful in extracting the last of the liquid from the receptacle because, when poured on an angle below horizontal, the contents can pass around the float and thus the float moves out of the aperture by floating on the liquid. Therefore, small amounts of liquid can be poured from the receptacle.
It is further advantageous that the seat has at least one aperture and the at least one aperture comprises a filter. Providing a filter in the apertures allows the liquid to be filtered as it is poured. This can be particularly important when wine that contains sediment is put into the receptacle. In such a situation, the receptacle is a decanter and filtering reduces the risk of an unpalatable mouthful of sediment from the wine.
In one embodiment, the float may move longitudinally and/or latitudinally within the valve when liquid is poured therethough. This assists with aeration of the liquid being poured through the valve and, especially in the case of wine, this can help to improve the flavour of the liquid as it is poured out. The closure member and valve may also be provided with rifling and other means to assist in further aerating the liquid as it is poured.
The junction at the aperture within the value, where the float meets the aperture when engaged, may be provided with ‘springs’ or temporarily deformable portions that reduce deform when the float is engaged and force the float out of the aperture when the force created by the float floating on the liquid in the receptacle is removed.
The value, float and the seat associated therewith may be formed so as to be held in a cartridge that can be removed from the rest of the assembly. This allows the valve section to be replaced should there be an issue with the mechanism, without having to replace the whole device. The cartridge may be provided with filters either at its upper or lower end.
Embodiments of the invention will now be described, by way of example only, and with reference to the accompanying drawings, in which:
The lower end of the neck 16 is connected to a closure member 22, via a fluid-impermeable flexible top sealing membrane 24. The closure member 22 comprises a disc 26 having apertures 28 therethrough and which has a silicone sealing portion 30 around its periphery, which, when inside the receptacle 12, is substantially continually in contact with the inside surface of the receptacle 12. The closure member 22 is attached to the neck 16 such that as the longitudinal position of the neck 16 is adjusted relative to the lid 14, the closure member 22 is also adjusted accordingly. The neck 16 thus constitutes an adjustment member. The neck 16 and closure member 22 effectively constitute a plunger device or a piston arrangement with the receptacle constituting a cylinder.
Due to the resistance created by the gripping sealing portion 30 when in contact with the inside surface of the receptacle 12, movement of the neck portion 16 in a substantially upward direction (away from the base of the receptacle 12) will ‘open’ the sealing membrane 24, as shown in
A valve 32 is provided in the centre of the disc 26, the valve 32 comprising an inlet 34 in fluid communication with an outlet 36 that comprises a duckbill valve. The inlet to the duckbill value 36 has a smaller diameter than that of the inlet 34. A float 38 is provided between the inlet 34 and the outlet 36 on the inlet side of the duckbill valve and is held in a valve seat 39 that allows for fluid to pass through the seat 39. The float 38 has a smaller diameter than the inlet 34, such that fluid can pass around it, but a larger diameter than the outlet 36. The float 38 is able to move longitudinally and coaxially relative to the disc 26 and can close the valve 32. Thus, the float 38 constitutes a blocking member.
When the sealing membrane 24 is in a closed position, fluid can only pass from the inside of the receptacle 12 to the outside of the receptacle 12 through the valve 32. When the sealing membrane 24 is in an open position, fluid can pass through either the valve 32 or through the apertures 28.
To use the device 10, the lid 14 is removed from the receptacle 12 and liquid is poured into the receptacle 12. The lid 14 is then positioned onto the receptacle 12 with the neck 16 extended to its upper-most position so that the closure member 22 is in close proximity to the lid 14 and within the top of the receptacle 12. The neck 16 is then lowered and the air within the receptacle 12 and above the liquid level passes through the valve 32, through the conduit 18 of the neck 16 and out of the upper end of the neck 16. As the neck 16 is pushed downwardly within the receptacle 12, the sealing member 24 closes over the apertures 28, thereby closing them to the passage of fluid. The weight of the float 38 prevents it from being forced upwards by the flow of air and closing the fluid path through the disc 26. The air is effectively removed from between the top of the liquid in the receptacle 12 and the closure member 22, thereby leaving the liquid substantially free from contact with oxygen.
When the disc 26 reaches the uppermost surface of the liquid within the receptacle 12, the float 38 remains on the surface of the liquid, due to its density being lower than that of the liquid within the receptacle 12. Any further pressure on the neck 16 causes the float 38 to be forced in an upward direction towards the valve outlet 36. Because the valve outlet 36 has a smaller diameter than that of the float 38, the float blocks the valve outlet 36 and prevents the flow of fluid through the valve and into the conduit 18. Therefore, the valve 32 is effectively closed and, due to the apertures 28 being closed by the sealing membrane 24, the disc 26 is substantially impermeable to liquid passing therethrough. Additionally, as the sealing portion 30 provides a seal around the periphery of the disc 26, the liquid cannot pass from within the receptacle to outside through or around the disc 26. Additionally, because the air above the liquid in the receptacle passes through the valve 32 before the liquid level is encountered by the float 38, substantially all of the air is removed from between the disc 26 and the liquid. Therefore, device is effectively self-limiting, or self-sealing, as the closure member 22 cannot be forced any further into the receptacle 12 as the liquid is incompressible. As a result, the liquid is less likely to spoil due to contact with air.
In order to remove the liquid from within the receptacle, the neck 16 is pulled away from the closure member 22, thereby lifting the sealing membrane 24 from the disc 26. This effectively opens the apertures 28 in the disc 26 and allows for the liquid to pass through the disc 26, along the funnel-shaped membrane 24 and into the conduit 18 of the neck 16, from which it can pass out of the top of the device 10 through the top of the neck 16. The plunger arrangement can be raised further so that the closure member is some distance from the top of the liquid level. In raising the neck 16, the blocking float 38 is uncoupled from the valve outlet 36 due to its weight. Should only some of the liquid be required, to reseal the device 10, a user pushes the neck 16 in a downward direction so that the closure member 22 and the sealing top membrane are operated as previously described.
The use of the duckbill valve at the outlet 36 reduces the risk of the liquid leaking through the disc 26 when the device 10 is stored on its side or away from a substantially vertical position.
The device 110 operates in the same manner as the device shown in
The lower end of the conduit 218 of the neck 216 is provided with an adjustable closure member 222, which comprises a pivotable float disc 250 having an integral weighted stem 252 on its lower surface. The pivotable float disc 250 in combination with the lower end of the neck 216 and the conduit 218 constitutes a valve arrangement. The float disc 250 is constructed such that it has a relatively low density and is thus able to substantially float on liquid, however, the stem is weighted such that it will orientate the float disc 250 so that the upper surface of the float disc 250 is substantially horizontal regardless of the orientation of the orientation of the receptacle. The circumference of the float disc 250 is sized such that it fits within the conduit 218 and it is provided with an 0-ring seal 254 about its periphery. The pivot axis 256 of the float disc 250 is substantially vertically adjustable such that the disc float 250 can be raised and lowered into, and out of, the end of the conduit 218. The pivot axis 256 is secured at the lower end of the neck 216 and adjacent the conduit 218.
For use, liquid 258 is poured into the receptacle 212 and the lid 214 is fitted into place with the fins 220 holding it securely with the neck 216 extended upwardly (thus the closure member 222 is located near the lid 214). The neck 216 is then adjusted so that the closure member 222 is lowered to the level of the liquid 258, with air passing through the closure member 222. The funnel shape of the lower end of the neck 216 forces air towards the conduit 218, which it passes through and leaves the receptacle 212. Once the liquid 258 enters the conical lower end of the neck 216, the float disc 250 begins to be ‘pushed’ into the end of the conduit 218 by virtue of it floating on the surface of the liquid 258, with the weight orientating it such that it is able to ‘plug’ the conduit 218 and prevent fluid flow therethrough, as shown by the arrow A. Thus, the air is removed from within the receptacle and the liquid 258 is retained therein. Because the closure member 222 seals the end of the conduit 218, and the peripheral seal 228 prevents the passage of fluid around the outside of the closure member 222, further pressing of the neck 216 in a downward direction self-seals the device and no liquid can pass into the conduit 218. Therefore, the liquid is contained within the receptacle 212 with substantially all of the air removed, thereby reducing the risk of oxidation.
To pour the liquid 258 from within the device 210, the neck 216 is raised, which ‘unplugs’ the conduit 218 due to the weighted stem 252 ‘pulling’ the disc float 250 from the conduit 218. The decanter is then tilted as usual and, as the weighted end 252 of the float disc 250 retains the closure member 222 in a substantially horizontal position, the liquid 258 is able to pass around the float disc 250 and through the conduit 218 out of the decanter 210. The raising of the neck 216 uncouples the float disc 250 due to the weight of the disc 250 and the negative pressure within the receptacle below the valve 222.
Any liquid 258 remaining in the decanter 210 after pouring may be re-sealed in the device 210 by lowering the neck 216 once more.
In the embodiment of
The valve 332 comprises a ball float 338 in the path of a valve outlet 336, the outlet 336 having a toroidal shape tapered towards its centre, such that the ball float 338 can engage and substantially block the aperture in the outlet 336. The ball float 338 is held in position by a valve float seat 339 that prevents it from moving too far from the outlet 336. In a similar manner to the devices 10 and 110 shown in the aforementioned figures, the ball float 338 floats when the closure member 322 contacts the liquid level and, due to the tapered nature of the valve outlet 336, is located in and blocks the aperture in the outlet 336, effectively sealing the conduit 318. The device 310 operates in a similar manner to those shown in
When the neck 416 and the closure member 422 are raised away from the level of the liquid 458, the weighted float disc 450 hangs down from the stem 460 and allows fluid to pass around it. Thus, when the neck 416 is lowered, the air within the receptacle 412 is able to pass into the conduit and out through the top of the neck 416. When the float 450 contacts the level of the liquid 458, due to its buoyancy, it is forced upwardly into the conduit 418 and blocks the conduit 418, thus sealing the liquid in the device 410 with substantially no air within the receptacle 412.
As the neck 416 is raised, the float disc 450 is uncoupled from within the conduit 418 due to its weight and any negative pressure within the receptacle below the valve 422. The stem 460 limits the distance that the float disc 450 can be withdrawn from the conduit 418 so that it is in place for any subsequent use. The liquid 458 can be poured around the closure member 422, which use the stem 460 and the weighted portion 452 to position it sufficiently far from the conduit 418 to allow flow of the liquid there around.
The outer edges of the float disc 450 may be provided with apertures to aid with the flow of liquid 458 through the float when the device 410 is in an open position. However, the central part of the float 450a is substantially impermeable to liquid.
The closure member 522 of the embodiment shown in
The outside of the housing 535 is provided with a connection arrangement in the form of an O-ring 537 that can be received within the lower end of arms 515, which extends substantially downwardly from the lid 514. When the neck 516 is pulled upwardly to a position at which it is most protruding from the lid 514, the O-ring 537 ‘snaps’ into the arms 515 to give tactile feedback to the user that the neck 514 is in a pour-ready position.
To seal the liquid in the device 510, the neck 516 is lowered and once the float 550 contacts the liquid contained within the receptacle 512, the outlet 536 is closed.
The ring 880 is placed over the base of the receptacle 812 and is raised to the top thereof. The closure member 822 is then inserted into the receptacle and the magnetic members 884 engage with the ferromagnetic portion 831. The ring 880 is then lowered downwardly with respect to the receptacle 812 and the closure member 822 moves downwardly accordingly due to the magnetic connection between the closure member 822 and the ring 880. The air within the receptacle 812 passes through the first valve 832a as the closure member 822 moves towards the level of the liquid 858. Once the closure member 822 reaches the liquid level 858, increased resistance is encountered by the closure member 822. Thus, as the ring 880, is lowered further, the magnetic connection is broken and the ring 880 passes to the bottom of the receptacle. Because the air is removed from the receptacle 812 before the closure member 822 touches the liquid, the liquid is stored substantially ‘air-free’.
When the ring 880 is raised up the receptacle again, the magnetic portions 831 are again engaged and air passes into the receptacle through valve 832b as the closure member 822 is raised. The closure member 822 can then be removed from the receptacle 812.
The arrangement of
The ball float 1038 is positioned within the seat 1039 and below the valve section 1032 and it can move vertically (longitudinally with respect to the bottle) within the seat from a first position resting on the seat to a second position wherein the float valve is against the valve section 1032 and prevents the passage of fluid therethrough. Additionally, in the second position, fluid cannot pass through the apertures 1092 and through the valve section 1032.
When the closure member 1022 is raised from any liquid in the receptacle 1012, it rests in the first position in the valve seat 1030, as shown in
Upon pouring the liquid out of the receptacle 1012, the closure member is raised away from the liquid in the receptacle 1012 and the ball float 1038 returns to the first position. The receptacle 1012 is then tilted and as the ball float 1038 contacts the liquid it floats on the liquid, leaving the aperture 1036 clear, as shown in
The cartridge 1090 may be removed from the closure member 1022, as shown in
When the closure member 1322 is raised and/or the receptacle 1312 is returned to an upright position, the elongate tip of the float 1338 disengages and returns to its first position, ready to float upon contact with the liquid in the receptacle 1312 and the re-enter the recess 1336.
The neck part 1818 can be rotated in the collar of the closure member 1822 such that the apertures 1836 in the neck part 1818 align with the apertures in the closure member 1822 and thereby allow fluid communication between the two parts. The neck part 1818 may also be rotated such that the blocking sections between the apertures 1836 are aligned with the apertures 1841 of the closure member 1822. In such an arrangement fluid communication between the inside of the device 1810 and the neck part 1818 is prohibited. The sealing portion 1830 comprises a material that creates a frictional connection between the receptacle 1812 and the closure member 1822 such that the closure member 1822 does not rotate upon rotation of the neck part 1818.
This device 1810 is twisted to a first, open position, with the apertures of the neck part 1818 and the closure member aligned. The closure member 1822 is then lowered to the surface of the contents of the receptacle 1812 using sight to judge when the closure member 1822 is at the level of the liquid within the device 1810. The neck part 1818 is then rotated to align the blocking members between the apertures 1836 with the apertures 1841, thereby closing the device 1810 to the air. This prevents the air getting to the contents of the receptacle 1812. Any suitable number, sized and shaped apertures may be used.
In the centre of the closure member 1922 is provided a threaded float carriage 1943, internal to which is a float 1938 that can be completely accepted within the float carriage 1943. The float comprises apertures around its periphery that allow air to pass from within the receptacle 1912 out of the neck part 1918. The float carriage is able to move longitudinally within the closure member 1922 such that it can extended and retracted into the closure member 1922. The float carriage 1943 further comprises apertures around its circumference that allow fluid communication through the top of the device 1910. Upon rotating the neck part 1918 of the device 1910, the closure member grips the internal wall of the receptacle 1912 and stays in place, whilst the float carriage is raised and lowered due to the threads within the closure member 1922.
The device can be operated from a first position with the float carriage retracted into the closure member 1922, by lowering the closure member 1922 towards the liquid in the receptacle 1912. Air above the liquid in the receptacle passes through the apertures of the float and through the neck part 1918. Eventually, the float 1936 comes into contact with the upper surface of the liquid within the receptacle 1912. At that point, it raises within the carriage and is accepted therein so that the apertures no longer permit fluid communication with the outside of the receptacle. The device 1910 thus removes the air from above the liquid and seals it.
To remove liquid from within the device 1910, the neck part is rotated to extend the float carriage and open the apertures about its periphery. The closure member 1922 can then be raised and the liquid poured through the apertures of the float carriage 1943 and out of the device 1910.
The end of the conduit of the neck may be provided with an air escape mechanism so that a user cannot block it off whilst pushing down on the neck, for example with their palm. Such a mechanism may be in the form of apertures adjacent to the top end of the neck.
The valve, and/or other parts, may be coated with an elastically yieldable material, such as a silicone substance, so that the seals are more secure.
Locating recesses may be used to ensure that the parts are positioned correctly. These may work with O-ring seals so that the parts ‘snap’ into place to give tactile feedback to a user and to ensure that the parts are correctly located before, for example, pouring the contents of the receptacle from the device.
The receptacle is intended to be closed at its lower end such that the contents are intended to be removed from the device from its upper end.
The closure member and/or the valve arrangement may be detachable from the end of the neck so that it can be easily cleaned. Further parts may be readily disconnected to assist with cleaning or replacing parts. The receptacle and/or other parts may comprise glass material.
Numerous other variations and modifications to the illustrated construction may occur to the reader familiar with the art without taking the device outside the scope of the present invention.
It may be desirable to combine a gas permeable membrane that is non-permeable to liquid with a valve comprising a blocking member to reduce the likelihood of leaking.
The device may be provided with an integral, or removable, aeration device in order to improve the flavour of the liquid contained within. For example, on a wine decanter in the form of a bottle, the device may have an aeration device within the conduit in the neck so that as the wine is poured it is aerated to develop the flavours.
The device may be provided with one or more electric motors to automate operation. For example, the closure member may be raised and lowered using an electric motor, the motor being set to turn off once a predetermined amount of resistance is felt in order to prevent the motor from burning out.
The device may further comprise a stopper in the end of the neck conduit to seal the device as one might a regular bottle.
The device shown in
Whilst some devices have been shown without cartridges for the valve, such an arrangement may be substituted with a cartridge arrangement. Likewise, those shown with a cartridge arrangement may be substituted with an integral non-cartridge arrangement. Additionally, where a cartridge is used, the cartridge may be yieldable to enable the float to be removed from the cartridge, for example, for cleaning and/or inspection.
The receptacle may be sized between 150 ml and 1000 ml.
In at least some embodiments of the present invention, the liquid is poured through the valve and gas exits through the valve, with no other apertures through which the liquid/air may pass. The liquid passes around the float of the float valve and through the aperture. The closure member does not need removing to pour liquid out of the receptacle.
The valve section may comprise a silicone and/or rubber material. This provides some flex and recoil, which, when the top is lifted, pushes the float back into its seat. This breaks the seal and reduces the risk of the float being stuck in a closed position.
Number | Date | Country | Kind |
---|---|---|---|
1222477.0 | Dec 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2013/000549 | 12/13/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/091188 | 6/19/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1699873 | Brodsky | Jan 1929 | A |
2341031 | Flynn | Feb 1944 | A |
3987941 | Blessing | Oct 1976 | A |
4471892 | Coleman | Sep 1984 | A |
6010036 | Bougamont | Jan 2000 | A |
6290105 | Cosentino | Sep 2001 | B1 |
8177088 | Williams | May 2012 | B1 |
20050061764 | Tamashiro | Mar 2005 | A1 |
20080190933 | Bougon | Aug 2008 | A1 |
20110278297 | Corti | Nov 2011 | A1 |
20110290826 | Harris | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
19858576 | Jun 2000 | DE |
2537775 | Dec 2012 | EP |
2508862 | Jun 2014 | GB |
2508999 | Jun 2014 | GB |
H8717572 | Jan 1995 | JP |
WO 2011101511 | Aug 2011 | WO |
Entry |
---|
International Search Report dated Mar. 25, 2014, from corresponding International Application No. PCT/GB2013/000549. |
Number | Date | Country | |
---|---|---|---|
20150321807 A1 | Nov 2015 | US |