The invention relates to a storage device for single-use needle assemblies.
Patients suffering from diseases like diabetes have to frequently self-administer injections. Injection devices like auto-injectors or pen injectors have been developed to facilitate self-administering injections. Typically, such injection devices are fitted with a sterile, disposable needle assembly for each injection to minimize the risk of infections.
A conventional needle assembly consists of a hub for engaging the injection device, a double-tipped needle coupled to the hub, and a spring-biased needle shield for hiding the needle from view and covering an injection end of the needle after the injection. The conventional needle assembly also includes a protective cap to maintain sterility of the needle and prevent against inadvertent actuation. Conventional needle assemblies are often packaged loosely in boxes. Thus, a patient is required to carry a box of the needle assemblies (and a sharps disposal unit) when travelling. Similarly, loosely packing the needle assemblies does not optimally use packing space available. Thus, there is a need for a single-use needle assembly.
Further, a conventional needle assembly typically engages the injection device by threads, requiring the patient to manually engage and disengage the needle assembly and the injection device. However, it may present an injury risk if the patient is required to manually remove a single-use needle, and in any event, it may be difficult for the patient (especially if the patient has dexterity or vision problems) to manipulate the single-use needle. Thus, there is a need for a storage device for single-use needle assemblies.
It is an object of the present invention to provide a storage device for single-use needle assemblies.
In an exemplary embodiment, a needle assembly storage device according to the present invention comprises a case having a first port and a second port, a first spool rotatably disposed in the case and adapted to support a storage unit of needle assemblies, a second spool rotatably disposed in the case and adapted to support the storage unit of the needle assemblies, and an actuator adapted to rotate the first spool or the second spool to advance the storage unit past the first port and the second port.
In an exemplary embodiment, the needle assembly storage device further comprises a separator disposed in the case adjacent the first port. The separator is adapted to separate a container surrounding the needle assemblies. At least one roller is disposed in the case adjacent the second port, the at least one roller adapted to re-wrap the needle assemblies in the container.
In an exemplary embodiment, the needle assembly storage device further comprises a sleeve stopper disposed in the case adjacent the first port. The sleeve stopper is adapted to releasably engage a given one of the needle assemblies when the given one of the needle assemblies is aligned with the first port.
In an exemplary embodiment, the needle assembly storage device further comprises a needle stopper disposed in the case adjacent the first port, the needle stopper adapted to engage a given one of the needle assemblies when the given one of the needle assemblies is aligned with the first port.
In an exemplary embodiment, the needle assembly storage device further comprises a first cover and a second cover adapted to selectively cover the first and second ports. The first cover includes a leg adapted to engage a given one of the needle assemblies prior to the given one of the needle assemblies being aligned with the first port. Movement of the given one of the needle assemblies relative to the case causes the given one of the needle assemblies to push the leg and the first cover to uncover the first port. In an exemplary embodiment, the needle assembly storage device further comprises a first spring adapted to apply a biasing force on the first cover, and a second spring adapted to apply a biasing force on the second cover. In an exemplary embodiment, the needle assembly storage device further comprises a first resilient control arm coupled to the case. The first control arm includes a first hook adapted to releasably engage a first lug on the first cover and a first control element disposed adjacent the first port and adapted to engage the injection device. In an exemplary embodiment, the needle assembly storage device further comprises a second resilient control arm coupled to the case. The second control arm includes a second hook adapted to releasably engage a second lug on the second cover and a second control element disposed adjacent the second port and adapted to engage the injection device. When the injection device engages the first control element, the first control arm deflects, the first hook disengages the first lug and the first cover is displaced relative to the case under the biasing force of the first spring to cover the first port. When the injection device engages the second control element, the second control arm deflects, the second hook disengages the second lug and the second cover is displaced relative to the case under the biasing force of the second spring to cover the second port.
In an exemplary embodiment, a storage unit according to the present invention comprises a mounting sleeve having at least one resilient clip, a needle having a needle hub adapted to engage the at least one resilient clip, and at least one web detachably coupling the needle hub to the mounting sleeve. The needle hub includes a portion adapted to deflect the resilient clip when the needle moves in a distal direction relative to the mounting sleeve and abut the resilient clip when the needle moves in a proximal direction relative to the mounting sleeve. The storage unit includes an array of mounting sleeves in which consecutive mounting sleeves are coupled by a flexible connector.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
Corresponding parts are marked with the same reference symbols in all figures.
As shown in
In an exemplary embodiment, consecutive mounting sleeves 1.3 are coupled by a flexible connector 1.4, which may allow the consecutive mounting sleeves 1.3 to rotate relative to each other. The flexible connector 1.4 may also allow the storage unit 1 to be configured as a spiral or be folded.
In an exemplary embodiment, a needle assembly 1.1, 1.1′ includes a needle 1.1.2 having a distal tip and proximal tip, and a needle hub 1.1.1 coupled to the needle 1.1.2. The needle hub 1.1.1 may include a proximal portion adapted to engage an adaptor on a medicament delivery device and a distal portion 1.1.1.1 adapted to engage resilient retaining clips 1.3.3 formed on the mounting sleeve 1.3. The distal portion 1.1.1.1 may be L-shaped, T-shaped, disc-shaped, or any other shape which includes a laterally extending hook or arm to engagement the retaining clips 1.3.3. In an exemplary embodiment, as shown in
In an exemplary embodiment, the needle assembly 1.1 may be maintained in its pre-use position relative to the mounting sleeve 1.3 by one or more breakable webs 1.3.1, shown in
In an exemplary embodiment, the case 2.1 may have a removable cover so that a used storage unit 1 can be replaced. In another exemplary embodiment, the case 2.1 may locked closed, preventing access to the cavity 2.3. In this exemplary embodiment, the storage device 2 may be disposable.
In an exemplary embodiment, the storage unit 1 may arranged as a spiral. To install the storage unit 1 in the case, a lagging end of the container 1.5 may be coupled to the first spool 1.7.1, and a leading end of the container 1.5 may fed over separators 2.4 to initiate separation of the container 1.5 and provide access to the unused needle assemblies 1.1. The leading end may then be fed through one or more rollers 2.5 and coupled to the second spool 1.7.2.
When the storage unit 1 is installed, the needle assemblies 1.1 can be advanced by actuation of an actuator 2.3, shown in
When the injection device 3 is going to engage an unused needle assembly 1.1, the injection device 3 may be inserted into the first port 2.6 until it abuts the case 2.1. A resilient sleeve stopper 2.10 (shown in
When the injection device is going to disengage a used needle assembly 1.1′, the injection device 3 may be inserted into the second port 2.7 until it abuts the case 2.1. As in the injection device 3 is pressed into the second port 2.7, the resilient clips 1.3.3 deflect, until the distal portion 1.1.1.1 of the needle hub 1.1.1 bypasses the resilient clips 1.3.3. Then, the resilient clips 1.3.3 return to their non-deflected position and engage the distal portion 1.1.1.1 of the needle hub 1.1.1 when the injection device 3′ is withdrawn from the second port 2.7, separating the used needle assembly 1.1′ from the injection device 3.
As shown in
When access to an unused needle assembly 1.1 is desired, the first and the second covers 2.9.1, 2.9.2 may be moved toward the third section 2.8.3, as shown in
In an exemplary embodiment, the actuator 2.3 may be operably coupled to the covers 2.9.1, 2.9.2. For example, sliding the covers 2.9.1, 2.9.2 to reveal the first port 2.6 may advance the storage unit 1 one step to the next available unused needle assembly 1.1. and sliding the covers 2.9.1, 2.9.2 to reveal the second port 2.7 may advance the storage unit 1 one step to reveal the next available empty mounting sleeve 1.3.
As shown in
As shown in
When an injection device 3 is inserted into the first port 2.6 to engage an unused needle assembly 1.1, the injection device 3 may engage a first control element 2.13 (shown in
As shown in
Those of skill in the art will understand that modifications (additions and/or removals) of various components of the apparatuses, methods and/or systems and embodiments described herein may be made without departing from the full scope and spirit of the present invention, which encompass such modifications and any and all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
11187239.6 | Oct 2011 | EP | regional |
The present application is a U.S. National Phase Application pursuant to 35 U.S.C. §371 of International Application No. PCT/EP2012/071434 filed Oct. 30, 2012, which claims priority to European Patent Application No. 11187239.6 filed Oct. 31, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/071434 | 10/30/2012 | WO | 00 | 4/25/2014 |