Information
-
Patent Grant
-
6240694
-
Patent Number
6,240,694
-
Date Filed
Tuesday, December 14, 199925 years ago
-
Date Issued
Tuesday, June 5, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Stephan; Beth A.
- Tran. A; Phi Dieu
Agents
-
CPC
-
US Classifications
Field of Search
US
- 052 6531
- 052 6532
- 052 6541
- 052 674
- 052 676
- 052 7413
- 052 74506
- 052 74507
- 052 802
- 052 812
- 052 811
-
International Classifications
-
Abstract
A structure includes a framework including frame members interconnected by hub members. The framework includes an inner surface and an outer surface. Cladding material is attached to the inner surface of the framework to form an enclosure or shell within the framework and maintain the framework exterior of the cladding material. This arrangement limits the collection of dust on the structural space frame elements due to the absence of the framework from the interior of the structure.
Description
BACKGROUND
The disclosures herein relate generally to space frames and more particularly to internal cladding mounted on a space frame structure.
There are recent improvements in space frame structures. In U.S. Pat. No. 5,867,961, a cladding support system for a framework includes rounded tubular members having an arcuate face and flattened opposite ends inserted into cylindrical hubs. A support element includes an elongated span and opposite end portions each including a terminal end. The span has an arcuate surface in seated engagement with the arcuate face of the tubular member. The end portions of the support element each have a tapered surface coextensive with and angularly disposed relative to the arcuate surface. The tapered surface includes a groove at each terminal end of the support element for receiving the flattened ends of the tubular members. The terminal ends are angular and overhang the cylindrical hubs.
In U.S. Pat. No. 5,924,258, a cladding support system includes rounded tubular members having an arcuate face. The tubular members are connected to extend outwardly from hubs. A cladding support member is mounted on the arcuate face of the tubular members and extends transversely across the tubular members. The support member is substantially āUā shaped including a raised closed end and a pair of sides terminating at an open end. A flange extends outwardly from each side. Each flange is attached to the arcuate face of the tubular member. Cladding is attached to the raised closed end of the support member.
In recent years, as society becomes more and more environmentally conscious, there is an increased need for covering very large piles of dry bulk aggregate materials, such as limestone, coal, mineral ores, fertilizer, and grains. Covering these piles prevents air and runoff pollution and protects the materials from contamination.
One of the preferred solutions that has emerged to satisfy this need is the metallic dome. The dome's framework is constructed of interconnected steel or aluminum sections, and the cladding generally consists of corrugated or flat sheets of the same metal laid and fastened over the structure. Metallic domes have the obvious advantages of lighter weight and lower costs. However, their use presents some special problems when the stored bulk material is combustible. Coal, fertilizer and grains fall into this category.
These problems include the fact that combustible materials may expose the structure to heat if they catch fire or combust spontaneously. The heat may easily exceed the safe levels at which aluminum or even steel maintain their strength. Dust may accumulate on the members of the structure. This dust may be dislodged from the structure elements easily by any of a number of events, such as strong winds, machinery vibrations, earthquake, vehicle impact, etc. The dust from such combustible materials may present a well known potentially hazardous situation. Lastly, in the case of corrosive material storage, the accumulation of corrosive dust on the structural space frame elements will eventually corrosively damage the structural elements.
Therefore, what is needed is an apparatus and a method of constructing a space frame dome structure that protects the structural elements from heat, and at the same time limits the collection of dust on the structural space frame elements.
SUMMARY
One embodiment, accordingly, provides an apparatus and a method for cladding a space frame dome structure internally for protecting the frame from heat and limiting the accumulation of combustible dust on the structural frame members. To this end, a structure includes a framework having frame members interconnected by hub members. The framework has an inner surface and an outer surface. Cladding material is attached to the inner surface of the framework to form an enclosure with the framework and maintain the framework exterior of the cladding material.
A principal advantage of this embodiment is that the structural frame elements are protected from heat within the structure. Also, dust from bulk material being stored in the structure is unable to settle and accumulate on the structural frame elements. Another advantage is that the structure has an exterior rough surface that diffuses wind forces acting thereon. Therefore in locations where wind design is a critical factor, such as in costal regions, the normally required weight of the structure may be reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view illustrating an embodiment of a space-frame building structure.
FIG. 2
is a partial cross-sectional view illustrating an embodiment of a main frame including inner and outer, spaced apart frameworks and an attached cladding layer.
FIG. 3
is a partial cross-sectional perspective view illustrating an embodiment of a hub having a frame member attached thereto.
FIG. 4
is a partial perspective view illustrating an embodiment of a hub having frame members and support elements attached thereto.
FIG. 5
is a partial perspective view illustrating an embodiment of a support element.
FIG. 6
is a perspective view illustrating an embodiment of a space frame building structure.
DETAILED DESCRIPTION
A space-frame building structure is generally designated
10
in
FIG. 1
, and includes a main framework
12
which comprises an inner surface portion
14
, an outer surface portion
16
, and may include a plurality of spacer members
18
interconnecting the inner and outer portions
14
,
16
, in a spaced apart, stacked structural arrangement. A cladding material
20
is attached to the inner surface
14
resulting in the cladding material
20
forming an interior shell
22
of structure
10
, and the framework
12
being exterior to the cladding material
20
. A single surface
14
may be used, however stacked surfaces
14
and
16
are preferred. In the event that a single surface
14
is used, the cladding material
20
is mounted on the interior side thus positioning the surface
14
exterior to the cladding material
20
.
More particularly,
FIG. 2
illustrates the framework
12
including the inner surface
14
, the outer surface
16
, one of the spacer members
18
, and the cladding material
20
. Framework
12
also includes a rectangular tube shaped cladding support element
23
having an elongated span
24
and opposite end portions
26
having a tapered surface
28
. Support element
23
includes a flat surface
23
a
for supporting the attachment of cladding material
20
.
The cladding material
20
comprises rectangular sheets
30
and
32
. Each sheet
30
and
32
has a corrugated profile including ridges
34
and valleys
36
. Sheet
30
has an edge portion
30
a
and sheet
32
has an edge portion
32
a.
The edge portions
30
a
and
32
a
overlap and the sheets
30
and
32
are attached to the flat surface
23
a
by self-tapping screws
37
.
Each surface
14
and
16
,
FIGS. 2 and 3
, includes a hub
38
having plurality of ribbed slots
40
formed therein, and a plurality of tubular structural members
42
attached to each hub
38
. Members
42
include flattened opposite ends
46
having ribs
48
for insertion into the ribbed slots
40
. An arcuate face
44
,
FIGS. 4 and 5
, of the tubular members
42
receives an arcuate face
50
, of support element
23
and end portion
26
of support elements
23
include the tapered surface
28
for covering hub
38
, and a groove
29
for receiving the flattened ends
46
of the tubular structural members
42
. In this manner, support elements
23
are provided for nested engagement with tubular members
42
. Attachment of support elements
23
to respective tubular members
42
is accomplished by the use of suitable fasteners such as self-tapping screws
52
, FIG.
2
.
Referring again to
FIGS. 1 and 2
, the inner surface
14
of main framework
12
, and the outer surface
16
are maintained in spaced apart relationship by spacer members
18
. The cladding material
20
, which is attached to the inner surface
14
, forms an interior shell
22
and maintains the entire framework
12
on the exterior of the building
10
. Although framework
12
is described above as including tubular structural member
42
attached to hubs
38
, it is recognized that structural members having various cross-sections, e.g. I, rectangular, angular, etc., may be used to form the exterior main framework
12
having an interior shell
22
of cladding material
20
attached thereto.
In
FIG. 6
, the rectangular sheets
30
and
32
of cladding material are illustrated as mounted on the inner surface
14
, and the outer surface
16
is spaced apart from the inner surface
14
to form the stacked main framework
12
. The sheets
30
and
32
of cladding material
20
, when fully installed, form the continuous interior shell
22
of the building
10
, and the stacked structural framework is exterior to the cladding.
Again in
FIG. 2
, the inner surface
14
is formed including tubular structural members
42
interconnected by hub members
38
. The outer surface
16
is similarly formed by tubular structural members
42
interconnected by hub members
38
. The inner and outer surfaces,
14
and
16
, respectively, are connected in a stacked, spaced apart relationship, positioning the inner surface portion
14
within the outer surface portion
16
. By connecting the inner surface
14
to the outer surface
16
in a stacked, spaced apart relationship by means of spacer members
18
, and attaching sheets
30
and
32
of cladding material to the support elements
23
on the inner surface
14
, the interior shell
22
is formed, and the framework
12
is exterior of the cladding material. As a result, one embodiment provides a structure including a framework having frame members interconnected by hub members. The framework has an inner surface and an outer surface. A cladding material is attached to the inner surface of the framework to form an enclosure within the framework and maintain the framework exterior of the cladding material.
Another embodiment provides a space-frame building structure including a framework having an inner side and an outer side. A plurality of sheets of overlapping cladding material are attached to the inner side of the framework to form a continuous interior surface within the framework. In this manner, the framework is exterior to the cladding material.
A further embodiment provides a method of cladding a structure internally of an external frame. The frame includes a framework including frame members interconnected by hub members. The framework includes an inner side and an outer side. Sheets of cladding material are attached to the inner side of the framework to form an interior surface of the structure. In this manner, the framework is exterior to the structure and the cladding material is interior to the structure.
As it can be seen, the principal advantages of these embodiments are that the structural frame elements are protected from heat within the structure. Dust from bulk material being stored in the structure is unable to accumulate on the structural frame elements. The structure is internally clad by attachment of rectangular corrugated sheets to the frame elements using self-tapping screws. The corrugated sheets provide valleys which function as a rain or moisture drain. The rectangular sheets may be arranged to permit the efficient and effective cladding of the doubly curved structural surface.
Although illustrative embodiments have been shown and described, a wide range of modification, change and substitution is contemplated in the foregoing disclosure and in some instances, some features of the embodiments may be employed without a corresponding use of other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the embodiments disclosed herein.
Claims
- 1. A structure comprising:a framework including frame members interconnected by hub members, the framework having an inner surface and an outer surface; and a cladding material attached to the inner surface of the framework to form an enclosure within the framework and maintain the framework exterior of the cladding material; wherein the frame members include rounded tubular members having an arcuate face and flattened opposite ends, the ends having ribs inserted into ribbed slots formed in the hub members; a cladding support element having an elongated span and opposite end portions, the span having an arcuate surface in seated engagement with the arcuate face of the tubular members, the end portions each having a tapered surface including a groove receiving the flattened ends of the tubular members.
- 2. The structure as defined in claim 1 wherein the support element is a rectangular tube having a flat surface.
- 3. The structure as defined in claim 1 wherein the cladding material is attached to the flat surface.
- 4. The structure as defined in claim 3 wherein the cladding material has a corrugated profile including ridges and valleys.
- 5. The structure as defined in claim 4 wherein the cladding material is attached to the inner surface by self-tapping screws.
- 6. The structure as defined in claim 5 wherein the cladding material includes rectangular sheets having edge portions overlapping adjacent rectangular sheets of cladding material.
- 7. The structure as defined in claim 3 wherein the cladding material is attached to the flat surface by self-tapping screws.
- 8. The structure as defined in claim 7 wherein the cladding material includes rectangular sheets having edge portions overlapping adjacent rectangular sheets of cladding material.
- 9. A space-frame building structure comprising:a framework having an inner side and an outer side; and a plurality of sheets of overlapping cladding material attached to the inner side of the framework to form a continuous interior surface within the framework, whereby the framework is exterior to the cladding material; wherein the inner side of the framework includes rounded tubular members connected to hub members, the tubular members having an arcuate face and flattened opposite ends, the ends having ribs inserted into ribbed slots formed in the hub members; a cladding support element having an elongated span and opposite end portions, the span having an arcuate surface in seated engagement with the arcuate face of the tubular members, the end portions each having a tapered surface including a groove receiving the flattened ends of the tubular members.
- 10. The structure as defined in claim 9 wherein the support element is a rectangular tube having a flat surface.
- 11. The structure as defined in claim 10 wherein the cladding material is attached to the flat surface.
- 12. The structure as defined in claim 9 wherein the cladding material has a corrugated profile including ridges and valleys.
- 13. The structure as defined in claim 12 wherein the cladding material is attached to the inner side by self-tapping screws.
- 14. The structure as defined in claim 13 wherein the cladding material includes rectangular sheets having edge portions overlapping adjacent rectangular sheets of cladding material.
- 15. The structure as defined in claim 11 wherein the cladding material is attached to the flat surface by self-tapping screws.
- 16. The structure as defined in claim 15 wherein the cladding material includes rectangular sheets having edge portions overlapping adjacent rectangular sheets of cladding material.
- 17. A method of cladding a structure internally of an external frame comprising the steps of:forming a framework including rounded tubular frame members interconnected by hub members, the framework having an inner side and an outer side; and attaching sheets of a cladding material to the inner side of the framework to form an interior surface of the structure, whereby the framework is exterior to the structure and the cladding material is interior to the structure; providing the rounded tubular members with an arcuate face and flattened opposite ends, the ends having ribs inserted into ribbed slots formed in the hub members; providing a cladding support element having an elongated span and opposite end portions, the span having an arcuate surface in seated engagement with the arcuate face of the tubular members, the end portions each having a tapered surface including a groove receiving the flattened ends of the tubular members.
- 18. The method as defined in claim 17 wherein the step of attaching sheets includes the step of attaching the sheets by self-tapping screws.
- 19. The method as defined in claim 17 further comprising the step of attaching a plurality of cladding support elements to the inner side.
- 20. The method as defined in claim 19 wherein the step of attaching sheets of cladding material includes the step of attaching the cladding material to the cladding support elements.
US Referenced Citations (17)