The subject matter of this application is related to U.S. patent application Ser. No. 13/591,937, filed on common date herewith, Ser. No. 13/591,888, filed on common date herewith, and Ser. No. 13/592,023, filed on common date herewith, the teachings of all of which are incorporated herein in their entireties by reference.
Magnetic and optical data storage devices, such as hard disk drives (HDDs), tape drives and compact disk drives, use heads to read and write information to and from a storage media. In a typical rotating storage system, data is stored on a disk in a series of adjacent concentric tracks. In a magnetic storage device, the tracks are accessed by read and write heads that move radially over the disk under control of a head-positioning servo mechanism so that the heads can be selectively positioned over a specific track. Once the head is aligned over a track, the servo mechanism causes the heads to ideally follow a center line of the selected track during a read or write operation.
Digital data is written to the storage media in a predetermined format using a write head that induces a magnetic field with sufficient amplitude to record on the magnetic material of the storage device. The magnitude and direction of the magnetic field is modulated to encode information into the magnetic surface of the storage device. The data might then be read as necessary by a read head for processing, for example, by a host computer. In read mode, as the magnetic storage surface moves across the gap in the head, the magnetic field of the storage surface is detected, and a voltage is induced in the head. The analog voltage signal is processed to obtain digital data. For example, the analog voltage might be amplified, filtered, and provided to an analog-to-digital converter (ADC) where the signal is digitized and passed through an equalizer and decoded.
As storage media storage capacities have increased, the data tracks are closer in proximity, increasing storage density and capacity of the media. However, as adjacent data tracks become closer, crosstalk between the adjacent tracks, Inter-Track Interference (ITI), might become increasingly significant, such that data in a desired track cannot be read, leading to data corruption. For example, the read and write heads might be positioned over the storage media by various types of alignment marks that might typically be recorded on the recording disk surface to track and adjust the position of the read and write heads. ITI might be the result of write head positioning error during a write operation, or read head positioning error during a read operation.
In order to detect ITI, typical systems might record tracking marks in one or both adjacent tracks, and read the marks when reading the desired track. However, such ITI cancellation requires seeking to the side tracks and waiting for the media to rotate to the position of the tracking marks. Thus, ITI cancellation could introduce large system latency to read data from the storage media.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Described embodiments provide a method of cancelling inter-track interference (ITI) from one or more sectors read from a desired track of a storage medium. A read channel reads sectors in a desired track of the storage medium. An iterative decoder of the read channel decodes the read sectors, and if the read sectors are incorrectly recovered from the storage medium, selected sectors of a first adjacent track are read. An ITI canceller of the read channel estimates ITI in the read sectors of the desired track corresponding to the selected sectors of the adjacent track and subtracts the estimated ITI of the adjacent track from the data for the sectors of the desired track, providing updated sector data. The ITI cancelled data is replayed to the iterative decoder, which decodes the ITI cancelled data and provides the decoded ITI cancelled data as output data of the read channel.
Aspects, features, and advantages of described embodiments will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.
Described embodiments provide a method of cancelling inter-track interference (ITI) from one or more sectors read from a desired track of a storage medium. A read channel reads sectors in a desired track of the storage medium. An iterative decoder of the read channel decodes the read sectors, and if the read sectors are incorrectly recovered from the storage medium, selected sectors of a first adjacent track are read. An ITI canceller of the read channel estimates ITI in the read sectors of the desired track corresponding to the selected sectors of the adjacent track and subtracts the estimated ITI of the adjacent track from the data for the sectors of the desired track, providing updated sector data. The ITI cancelled data is replayed to the iterative decoder, which decodes the ITI cancelled data and provides the decoded ITI cancelled data as output data of the read channel.
Table 1 summarizes a list of acronyms employed throughout this specification as an aid to understanding the described embodiments:
In some embodiments, storage media 112 might store data employing shingled magnetic recording (SMR). SMR increases the storage densities beyond the capacity limits of traditional hard disk drives HDDs employing conventional perpendicular recording. SMR generally requires fewer technology changes to the recording technology than Bit-Patterned Magnetic Recording (BPMR), Energy Assisted Magnetic Recording (EAMR), Heat Assisted Magnetic Recording (HAMR), and Thermally Assisted Magnetic Recording. In SMR drives, track density is increased by writing tracks successively in an overlapped shingled manner as shown in
However, due to the small read track width, significant ITI from adjacent (or neighboring) tracks might occur during read operations, especially when a read head is employed that is not significantly narrower than the width of the shingled tracks. As shown in
Referring back to
Iterative decoder 106 receives Y-samples 105 that correspond to the data read from the read track of SMR media 112. Iterative decoder 106 decodes, for example by performing error recovery, one or more sectors read from one or more desired read tracks of SMR media 112. In some embodiments, iterative decoder 106 might average the Y-sample values over multiple reads of given sector(s) of desired read track(s). In some other embodiments, iterative decoder 106 might select a relative “most reliable” set of Y-samples from a group of Y-sample sets corresponding to multiple reads of given sector(s) of desired read track(s). If iterative decoder 106 successfully decodes the sector(s), iterative decoder 106 provides the detected data (detected data 111) as the read data for further processing (e.g., to be provided to a host device).
If iterative decoder 106 fails to successfully decode the sector(s), iterative decoder 106 provides the detected data (detected data 107) to ITI cancellation module 108 to perform ITI cancellation. Thus, ITI cancellation might typically be performed if typical decoding and other decoding retry mechanisms fail to successfully decode a sector. Thus, in described embodiments, ITI cancellation module 108 is a sector-based offline error recovery module.
ITI cancellation module 108 receives data from the desired track, N, and one or more of the adjacent (side) tracks. Equalized Y-samples 105 corresponding to one or more failing target sectors on track N are stored in Y-samples buffer 110. In some embodiments, Y-samples buffer 110 might store one or more sectors (e.g., either 512 B or 4 kB sectors). Non-Return-to-Zero (NRZ) data for adjacent sectors in tracks N−1 and N+1 might be received from iterative decoder 106 by reading storage media 112 using a raw-data mode. The side track data might take a significant amount of time to collect due to seeking read head 302 to position over the side tracks and waiting for the media to rotate to the correct position for the corresponding sectors. ITI cancellation module 108 estimates, calculates and cancels ITI in the equalized Y-samples for the failed sector(s) on track N using the NRZ data bits from corresponding adjacent sectors in adjacent tracks N−1 and N+1. ITI cancellation module 108 might store ITI-cancelled Y-samples (updated Y-samples 109) in Y-samples buffer 110 and then provide updated Y-samples 109 to iterative decoder 106. Iterative decoder restarts the iterative decoding process using updated Y-samples 109, and provides ITI-cancelled detected data 111 as output data, for example to a host device (not shown). Detected data 111 might be Q-bit data corresponding to one or more partial or complete sectors recovered from storage media 112.
In described embodiments, read channel 100 might be coupled to the host device by a Small Computer System Interface (“SCSI”) link, a Serial Attached SCSI (“SAS”) link, a Serial Advanced Technology Attachment (“SATA”) link, a Universal Serial Bus (“USB”) link, a Fibre Channel (“FC”) link, an Ethernet link, an IEEE 802.11 link, an IEEE 802.15 link, an IEEE 802.16 link, a Peripheral Component Interconnect Express (PCI-E) link, or any other similar interface for connecting a peripheral device to a host device.
Although shown in
Thus, in described embodiments employing firmware ITI cancellation, Y-samples for track N might be transferred from read channel 100 to control processor 117 using an APB or AHB bus. NRZ data for the side tracks (N−1 and/or N+1) might be transferred to control processor 117 using the NRZ data bus. Optionally, NRZ data for desired track N might also be transferred to control processor 117 for error-based ITI estimation. The NRZ data might typically be in raw-data format that includes data bits, parity bits, formatting bits or other control data. As shown in
Since, in described embodiments, ITI cancellation module 108 employs the NRZ data for at least one of adjacent tracks N−1 and N+1, media 112 might generally make multiple disk revolutions in order for ITI cancellation module 108 to recover failing sector(s) of desired track N. For example, three disk revolutions might be needed to read and transfer data samples for track N and the NRZ data for adjacent tracks N−1 and N+1 from media 112 to ITI cancellation module 108. In some embodiments, for example when ITI cancellation is performed by firmware operating on processor 117, the transfer of data from media 112 to ITI cancellation module 108 might take additional disk revolutions. Additional revolutions of media 112 might occur during ITI cancellation before iterative decoder 106 restarts processing on the updated Y-samples.
In many SMR implementations, it might be known which side track (e.g., either N+1 or N−1) has dominant interference. Thus, in many instances, for described embodiments, there is a high likelihood that the desired data from track N might be successfully recovered after cancelling interference from only the dominant side track. If the data cannot be recovered after cancellation of interference from the dominant side track, cancellation of interference from the non-dominant side track might be performed.
If at step 408 iterative decoder 106 does not correctly recover the desired data from track N, then process 400 continues to step 410 to being ITI cancellation. At step 410, ITI cancellation module 108 receives Y-samples 105 and detected data 107 from iterative decoder 106 via Y-samples buffer 110.
In some embodiments, the Y-samples and NRZ data for the desired sector(s) of track N are obtained during two separate reads (e.g., at step 406 and step 414) in two separate disk revolutions. In such embodiments, at step 412, read channel 100 is set to read the desired sectors of media 112 at step 414 in a raw-data mode in a second revolution of media 112 (e.g., revolution 602 of
In other embodiments, the Y-samples and NRZ data for the desired sector(s) of track N might be obtained during the same read (revolution), for example at step 406. This allows one fewer disk revolution and, thus, faster data recovery time. On the other hand, the Y-samples and NRZ data would be captured with the same read channel parameters (e.g., the same number of local and global iterations of iterative decoder 106), which, as described, could introduce additional errors into the NRZ data.
In some embodiments, ITI cancellation module 108 might employ one of two approaches for estimating ITI (e.g., at steps 420 and 426 of
As shown in
At step 417, ITI cancellation module 108 determines which side track is a first adjacent track based on a dominant interference of ITI contribution to the desired track. At step 418, ITI cancellation module 108 reads, via read channel 100, data for a first side track (e.g., the dominant side track, indicated as track “N+1” in the example shown in
At step 420, ITI cancellation module 108 estimates ITI from track N+1 in track N. In embodiments employing error based ITI cancellation, the ITI is determined based on the NRZ data for track N+1 (e.g., read at step 418) and the estimated error signal (e.g., generated at step 415 based on the NRZ data for track N and characteristics of read channel 100) to determine how much error (e.g., ITI) was caused by adjacent track N+1. Each point of the error signal is correlated with the n closest NRZ bits of the adjacent track to determine how much each bit interfered with track N to produce an interference profile of estimated ITI. In embodiments employing Y-samples based ITI cancellation, Y-samples for track N are correlated with NRZ data from the adjacent track N+1 without using NRZ data for track N.
At step 422, ITI cancellation module 108 subtracts the estimated ITI for track N+1 from the Y-samples for track N. At step 424, ITI cancellation module 108 reads, via read channel 100, data for a second side track (e.g., the non-dominant side track, indicated as track “N−1” in the example shown in
At step 426, ITI cancellation module 108 estimates ITI from track N−1 in track N. In embodiments employing error based ITI cancellation, the ITI is determined based on the NRZ data for track N−1 (e.g., read at step 424), and the estimated error signal generated at step 415 based on the Y-samples for track N (e.g., read at step 406), the NRZ data for track N (e.g., read at step 414) and characteristics of read channel 100 to determine how much error (e.g., ITI) was caused by adjacent track N−1. Each point of the error signal is correlated with the n closest NRZ bits of the adjacent track to determine how much each bit interfered with track N to produce an interference profile of estimated ITI. In embodiments employing Y-samples based ITI cancellation, Y-samples for track N are correlated with NRZ data from the adjacent track N+1 without using NRZ data for track N.
At step 428, ITI cancellation module 108 subtracts the estimated ITI for track N−1 from the NRZ data for track N. At step 430, ITI cancellation module 108 replays the sector(s) for track N using the ITI-cancelled data to iterative decoder 106 (e.g., as updated Y-samples 109) for decoding into detected data 111. Thus, ITI processing is further separated such that cancellation for a first side track (e.g., the dominant side track) has already been completed without waiting for data from the other side track to be read from media 112. Thus, ITI cancellation processing occurs in parallel with read head 302 seeking to position over the side tracks and media 112 completing disk revolutions.
In some embodiments, while the NRZ data for the adjacent sectors read at steps 418 and 424 typically includes only media bits (e.g., user data bits, parity bits, RLL bits or ECC bits, etc.), the Y-samples in buffer 110 might also include additional supporting bits such as synch-mark or fragment bits that might be employed to align Y-sample data in buffer 110 with NRZ data from adjacent tracks.
If at step 508 iterative decoder 106 does not correctly recover the desired data from track N, then process 500 continues to step 510 to begin ITI cancellation. At step 510, ITI cancellation module 108 receives Y-samples 105 and detected data 107 from iterative decoder 106 and stores them to buffer 110.
In some embodiments, the Y-samples and NRZ data for the desired sector(s) of track N are obtained during two separate reads (e.g., at step 506 and step 514) in two separate disk revolutions. In such embodiments, at step 512, read channel 100 is set to read the desired sectors of media 112 at step 514 in a raw-data mode in a second revolution of media 112 (e.g., revolution 602 of
In other embodiments, the Y-samples and NRZ data for the desired sector(s) of track N might be obtained during the same read (revolution), for example at step 506. This allows one fewer disk revolution and, thus, faster data recovery time. On the other hand, the Y-samples and NRZ data would be captured with the same read channel parameters (e.g., the same number of local and global iterations of iterative decoder 106), which, as described, could introduce additional errors into the NRZ data.
Similarly as described in regard to
As shown in
At step 517, ITI cancellation module 108 determines which side track is a first adjacent track based on a dominant interference of ITI contribution to the desired track. At step 518, At step 518, ITI cancellation module 108 reads, via read channel 100, data for a first side track (e.g., the dominant side track, indicated as track “N+1” in the example shown in
At step 520, ITI cancellation module 108 estimates ITI from track N+1 in track N. ITI in track N might be estimated similarly as described in regard to
At step 522, ITI cancellation module 108 subtracts the estimated ITI for track N+1 from the NRZ data for track N. At step 524, ITI cancellation module 108 replays the sector(s) for track N using the ITI-cancelled data to iterative decoder 106 (e.g., as updated Y-samples 109) for decoding into detected data 111. At step 526, if iterative decoder 106 correctly recovers the sector(s) from track N, then, at step 536, the recovered data is provided as detected data 111 (e.g., to a host device not shown in
At step 526, if iterative decoder 106 does not correctly recover the sector(s) from track N, then, at step 528, ITI cancellation module 108 reads, via read channel 100, data for a second side track (e.g., the non-dominant side track, indicated as track “N−1” in the example shown in
At step 530, ITI cancellation module 108 estimates ITI in track N from track N−1. ITI in track N might be estimated similarly as described in regard to
Although shown in
Further, although described herein as each “bit” of a signal having a corresponding logic value, it is understood that the various signals described herein might employ multi-bit data symbols based on various data encoding schemes, such as pulse amplitude modulation (e.g., PAM-4). Further, although described herein as employing NRZ signaling, any signal encoding scheme might be employed.
Thus, as described herein, described embodiments provide a method of cancelling inter-track interference (ITI) from one or more sectors read from a desired track of a storage medium. A read channel reads sectors in a desired track of the storage medium. An iterative decoder of the read channel decodes the read sectors, and if the read sectors are incorrectly recovered from the storage medium, selected sectors of a first adjacent track are read. An ITI canceller of the read channel estimates ITI in the read sectors of the desired track corresponding to the selected sectors of the adjacent track and subtracts the estimated ITI of the adjacent track from the data for the sectors of the desired track, providing updated sector data. The ITI cancelled data is replayed to the iterative decoder, which decodes the ITI cancelled data and provides the decoded ITI cancelled data as output data of the read channel.
While embodiments have been described with respect to processes of circuits, including possible implementation as a single integrated circuit, a multi-chip module, a single card, or a multi-card circuit pack, embodiments of the present invention are not so limited. As would be apparent to one skilled in the art, various functions of circuit elements might also be implemented as processing blocks in a software program. Such software might be employed in, for example, a digital signal processor, microcontroller, or general-purpose computer. Such software might be embodied in the form of program code embodied in tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy diskettes, CD-ROMs, hard drives, or any other non-transitory machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the invention. When implemented on a general-purpose processor, the program code segments combine with the processor to provide a unique device that operates analogously to specific logic circuits. Embodiments of the present invention can also be manifest in the form of a bitstream or other sequence of signal values electrically or optically transmitted through a medium, stored magnetic-field variations in a magnetic recording medium, etc., generated using a method and/or an apparatus of the present invention.
It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps might be included in such methods, and certain steps might be omitted or combined, in methods consistent with various embodiments.
As used herein in reference to an element and a standard, the term “compatible” means that the element communicates with other elements in a manner wholly or partially specified by the standard, and would be recognized by other elements as sufficiently capable of communicating with the other elements in the manner specified by the standard. The compatible element does not need to operate internally in a manner specified by the standard.
Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value of the value or range. Signals and corresponding nodes or ports might be referred to by the same name and are interchangeable for purposes here.
Transistors are typically shown as single devices for illustrative purposes. However, it is understood by those skilled in the art that transistors will have various sizes (e.g., gate width and length) and characteristics (e.g., threshold voltage, gain, etc.) and might consist of multiple transistors coupled in parallel to get desired electrical characteristics from the combination. Further, the illustrated transistors might be composite transistors.
Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements. Signals and corresponding nodes or ports might be referred to by the same name and are interchangeable for purposes here.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention might be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.
This application is a continuation-in-part, and claims the benefit of the filing date, of U.S. patent application Ser. Nos. 13/186,174, 13/186,197 and 13/186,213 all filed Jul. 19, 2011, Ser. No. 13/250,246 filed Sep. 30, 2011, and Ser. No. 13/460,204 filed Apr. 30, 2012, the teachings of all of which are incorporated herein in their entireties by reference.
Number | Name | Date | Kind |
---|---|---|---|
5278703 | Rub | Jan 1994 | A |
5278846 | Okayama et al. | Jan 1994 | A |
5325402 | Ushirokawa | Jun 1994 | A |
5371638 | Saliba | Dec 1994 | A |
5392299 | Rhines et al. | Feb 1995 | A |
5471500 | Blaker et al. | Nov 1995 | A |
5513192 | Janku et al. | Apr 1996 | A |
5523903 | Hetzler | Jun 1996 | A |
5550870 | Blaker et al. | Aug 1996 | A |
5612964 | Haraszti | Mar 1997 | A |
5701314 | Armstrong et al. | Dec 1997 | A |
5710784 | Kindred et al. | Jan 1998 | A |
5712861 | Inoue et al. | Jan 1998 | A |
5717706 | Ikeda | Feb 1998 | A |
5748592 | Hino et al. | May 1998 | A |
5768044 | Hetzler | Jun 1998 | A |
5802118 | Bliss et al. | Sep 1998 | A |
5844945 | Nam et al. | Dec 1998 | A |
5898710 | Amrany | Apr 1999 | A |
5917855 | Kim | Jun 1999 | A |
5923713 | Hatakeyama | Jul 1999 | A |
5940238 | Nayak et al. | Aug 1999 | A |
5966259 | Mitsuishi et al. | Oct 1999 | A |
5978414 | Nara | Nov 1999 | A |
5983383 | Wolf | Nov 1999 | A |
6005897 | McCallister et al. | Dec 1999 | A |
6023783 | Divsalar et al. | Feb 2000 | A |
6029264 | Kobayashi et al. | Feb 2000 | A |
6041432 | Ikeda | Mar 2000 | A |
6065149 | Yamanaka | May 2000 | A |
6097764 | McCallister et al. | Aug 2000 | A |
6145110 | Khayrallah | Nov 2000 | A |
6216249 | Bliss et al. | Apr 2001 | B1 |
6216251 | McGinn | Apr 2001 | B1 |
6229467 | Eklund et al. | May 2001 | B1 |
5317472 | Choi et al. | Jun 2001 | A1 |
6266795 | Wei | Jul 2001 | B1 |
6317472 | Choi et al. | Nov 2001 | B1 |
6351832 | Wei | Feb 2002 | B1 |
6377610 | Hagenauer et al. | Apr 2002 | B1 |
6381726 | Weng | Apr 2002 | B1 |
6438717 | Butler et al. | Aug 2002 | B1 |
6473878 | Wei | Oct 2002 | B1 |
6476989 | Chainer et al. | Nov 2002 | B1 |
6625775 | Kim | Sep 2003 | B1 |
6657803 | Ling et al. | Dec 2003 | B1 |
6671404 | Kawatani et al. | Dec 2003 | B1 |
6735028 | Rothschild | May 2004 | B1 |
6748034 | Hattori et al. | Jun 2004 | B2 |
6757862 | Marianetti | Jun 2004 | B1 |
6785863 | Blankenship et al. | Aug 2004 | B2 |
6788654 | Hashimoto et al. | Sep 2004 | B1 |
6810502 | Eidson | Oct 2004 | B2 |
6826140 | Brommer et al. | Nov 2004 | B2 |
6980382 | Hirano et al. | Dec 2005 | B2 |
6986098 | Poeppelman | Jan 2006 | B2 |
7002762 | Mayergoyz et al. | Feb 2006 | B2 |
7010051 | Murayama et al. | Mar 2006 | B2 |
7047474 | Rhee et al. | May 2006 | B2 |
7058873 | Song et al. | Jun 2006 | B2 |
7068459 | Cloke | Jun 2006 | B1 |
7073118 | Greenberg et al. | Jul 2006 | B2 |
7093179 | Shea | Aug 2006 | B2 |
7113356 | Wu | Sep 2006 | B1 |
7136244 | Rothbert | Nov 2006 | B1 |
7173783 | McEwen et al. | Feb 2007 | B1 |
7184486 | Wu et al. | Feb 2007 | B1 |
7191378 | Eroz et al. | Mar 2007 | B2 |
7203015 | Sakai et al. | Apr 2007 | B2 |
7203887 | Eroz et al. | Apr 2007 | B2 |
7236757 | Raghaven et al. | Jun 2007 | B2 |
7253986 | Berman et al. | Aug 2007 | B2 |
7257764 | Suzuki et al. | Aug 2007 | B2 |
7310768 | Eidson et al. | Dec 2007 | B2 |
7313750 | Feng et al. | Dec 2007 | B1 |
7370258 | Iancu et al. | May 2008 | B2 |
7403752 | Raghaven et al. | Jul 2008 | B2 |
7428120 | Berman et al. | Sep 2008 | B2 |
7430256 | Zhidkov | Sep 2008 | B2 |
7502189 | Sawaguchi et al. | Mar 2009 | B2 |
7505537 | Sutardja | Mar 2009 | B1 |
7509927 | Mukomilow | Mar 2009 | B2 |
7523375 | Spencer | Apr 2009 | B2 |
7587657 | Haratsch | Sep 2009 | B2 |
7590168 | Raghaven et al. | Sep 2009 | B2 |
7702989 | Graef et al. | Apr 2010 | B2 |
7712008 | Song et al. | May 2010 | B2 |
7738201 | Jin et al. | Jun 2010 | B2 |
7752523 | Chaichanavong | Jul 2010 | B1 |
7801200 | Tan | Sep 2010 | B2 |
7801253 | Wu | Sep 2010 | B1 |
7802163 | Tan | Sep 2010 | B2 |
8169730 | Cheng et al. | May 2012 | B2 |
8259872 | Wu et al. | Sep 2012 | B2 |
8300339 | Nangare et al. | Oct 2012 | B1 |
20030063405 | Jin et al. | Apr 2003 | A1 |
20030070109 | Harada | Apr 2003 | A1 |
20030081693 | Raghaven et al. | May 2003 | A1 |
20030087634 | Raghaven et al. | May 2003 | A1 |
20030112896 | Raghaven et al. | Jun 2003 | A1 |
20030134607 | Raghaven et al. | Jul 2003 | A1 |
20040071206 | Takatsu | Apr 2004 | A1 |
20040098659 | Bjerke et al. | May 2004 | A1 |
20050010855 | Lusky | Jan 2005 | A1 |
20050078399 | Fung | Apr 2005 | A1 |
20050111540 | Modrie et al. | May 2005 | A1 |
20050157780 | Werner et al. | Jul 2005 | A1 |
20050180039 | Mayergoyz et al. | Aug 2005 | A1 |
20050195749 | Elmasry et al. | Sep 2005 | A1 |
20050216819 | Chugg et al. | Sep 2005 | A1 |
20050273688 | Argon | Dec 2005 | A1 |
20060020872 | Richardson et al. | Jan 2006 | A1 |
20060031737 | Chugg et al. | Feb 2006 | A1 |
20060123285 | De Araujo et al. | Jun 2006 | A1 |
20060140311 | Ashley et al. | Jun 2006 | A1 |
20060168493 | Song et al. | Jul 2006 | A1 |
20060181975 | Padiy | Aug 2006 | A1 |
20060195772 | Graef et al. | Aug 2006 | A1 |
20060210002 | Yang et al. | Sep 2006 | A1 |
20060248435 | Haratsch | Nov 2006 | A1 |
20060256670 | Park et al. | Nov 2006 | A1 |
20070011569 | Vila Casado et al. | Jan 2007 | A1 |
20070047121 | Elefeheriou et al. | Mar 2007 | A1 |
20070047635 | Stojanovic et al. | Mar 2007 | A1 |
20070076826 | Stockmanns et al. | Apr 2007 | A1 |
20070110200 | Mergen et al. | May 2007 | A1 |
20070230407 | Petrie et al. | Oct 2007 | A1 |
20070286270 | Huang et al. | Dec 2007 | A1 |
20080049825 | Chen et al. | Feb 2008 | A1 |
20080055122 | Tan | Mar 2008 | A1 |
20080065970 | Tan | Mar 2008 | A1 |
20080069373 | Jiang et al. | Mar 2008 | A1 |
20080151704 | Harada | Jun 2008 | A1 |
20080168330 | Graef et al. | Jul 2008 | A1 |
20080276156 | Gunnam | Nov 2008 | A1 |
20080301521 | Gunnam | Dec 2008 | A1 |
20090135693 | Kim et al. | May 2009 | A1 |
20090185643 | Fitzpatrick | Jul 2009 | A1 |
20090199071 | Graef | Aug 2009 | A1 |
20090235116 | Tan et al. | Sep 2009 | A1 |
20090235146 | Tan | Sep 2009 | A1 |
20090259915 | Livshitz et al. | Oct 2009 | A1 |
20090273492 | Yang et al. | Nov 2009 | A1 |
20090274247 | Galbraith et al. | Nov 2009 | A1 |
20100002795 | Raghaven et al. | Jan 2010 | A1 |
20100042877 | Tan | Feb 2010 | A1 |
20100042890 | Gunam | Feb 2010 | A1 |
20100050043 | Valentin Savin | Feb 2010 | A1 |
20100061492 | Noeldner | Mar 2010 | A1 |
20100070837 | Xu et al. | Mar 2010 | A1 |
20100164764 | Nayak | Jul 2010 | A1 |
20100185914 | Tan et al. | Jul 2010 | A1 |
20110075292 | New et al. | Mar 2011 | A1 |
20110075569 | Marrow et al. | Mar 2011 | A1 |
20110080211 | Yang et al. | Apr 2011 | A1 |
20110119498 | Guyot | May 2011 | A1 |
20110167246 | Yang et al. | Jul 2011 | A1 |
20110311002 | Li | Dec 2011 | A1 |
20120105994 | Bellorado et al. | May 2012 | A1 |
20130031406 | Cho | Jan 2013 | A1 |
20130170061 | Saito et al. | Jul 2013 | A1 |
20130265669 | Hostetter | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
0522578 | Jan 1993 | EP |
0631277 | Dec 1994 | EP |
1814108 | Aug 2007 | EP |
2006016751 | Feb 2006 | WO |
2006134527 | Dec 2006 | WO |
2007091797 | Aug 2007 | WO |
2010126482 | Apr 2010 | WO |
2010101578 | Sep 2010 | WO |
Entry |
---|
Vasic, B., et al., “Soft-Error-Event Decoding for Multitrack Magnetic Recording Channels”, IEEE Transactions on Magnetics. vol. 40, Issue 2. pp. 492-497, Mar. 2004 (USA). |
Vea, M., et al., “Detection in Magnetic Recording with Cross-Track Interference”, 1991 Conference Record of the 25th Asilomar Conference on Signals, Systems and Computers. Nov. 1991 (USA). |
Singla, N., et al., “Decoding for Magnetic Recording Media with Overlapping Tracks”, Digests of the IEEE International Magnetics Conference 2005, Apr. 2005 (Japan). |
Karakulak. S., et al.; “A Parametric Study of Inter-Track Interference in Bit Patterned Media Recording” IEEE Transactions on Magnetics, vol. 46, Issue 3, pp. 819-024, Feb. 2010 (USA). |
Mita, S., et al., “Reduction of Bit Errors due to Inter-Track Interference using LLRS of Neighboring Tracks”, IEEE Transactions on Magnetics, vol. 47, Issue 10, pp. 3316-3319, Sep. 2011 (USA). |
Haratsch, E., “Advanced Read Channel Technologies”, Accelerating Innovation Summit, Nov. 2011 (USA). |
Hall, D., et al., “Data Handling Algorithms for Autonomous Shingled Magnetic Recording HDDs”, IEEE Transactions on Magnetics, vol. 48, No. 5, May 2012 (USA). |
U.S. Appl. No. 13/186,213, filed Jul. 19, 2011, Mathew, George et al. |
U.S. Appl. No. 13/186,197, filed Jul. 19, 2011, Mathew, George et al. |
U.S. Appl. No. 13/186,146, filed Jul. 19, 2011, Mathew, George et al. |
U.S. Appl. No. 11/461,026, filed Jul. 31, 2006, Tan, Weijun. |
U.S. Appl. No. 11/461,198, filed Jul. 31, 2006, Tan, Weijun. |
U.S. Appl. No. 11/461,283, filed Jul. 31, 2006, Tan, Weijun. |
U.S. Appl. No. 12/540,283, filed Aug. 12, 2009, Liu et al. |
U.S. Appl. No. 12/652,201, filed Jan. 5, 2010, Mathew et al. |
U.S. Appl. No. 12/763,050, filed Apr. 19, 2010, Ivkovic et al. |
U.S. Appl. No. 12/792,555, filed Jun. 2, 2010, Liu et al. |
U.S. Appl. No. 12/887,317, filed Sep. 21, 2010, Xia et al. |
U.S. Appl. No. 12/887,330, filed Sep. 21, 2010, Zhang et al. |
U.S. Appl. No. 12/887,369, filed Sep. 21, 2010, Liu et al. |
U.S. Appl. No. 12/901,816, filed Oct. 11, 2010, Li et al. |
U.S. Appl. No. 12/901,742, filed Oct. 11, 2010, Yang. |
U.S. Appl. No. 12/917,756, filed Nov. 2, 2010, Miladinovic et al. |
U.S. Appl. No. 12/947,931, filed Nov. 17, 2010, Yang, Shaohua. |
U.S. Appl. No. 12/947,947, filed Nov. 17, 2010, Ivkovic et al. |
U.S. Appl. No. 12/972,942, filed Dec. 20, 2010, Liao et al. |
U.S. Appl. No. 12/992,948, filed Nov. 16, 2010, Yang et al. |
U.S. Appl. No. 13/021,814, filed Feb. 7, 2011, Jing, Ming et al. |
U.S. Appl. No. 13/031,818, filed Feb. 22, 2011, Xu, Changyou et al. |
U.S. Appl. No. 13/050,129, filed Mar. 17, 2011, Tan et al. |
U.S. Appl. No. 13/050,765, filed Mar. 17, 2011, Yang et al. |
U.S. Appl. No. 13/088,119, filed Apr. 15, 2011, Zhang et al. |
U.S. Appl. No. 13/088,146, filed Apr. 15, 2011, Li et al. |
U.S. Appl. No. 13/088,178, filed Apr. 15, 2011, Sun et al. |
U.S. Appl. No. 13/126,748, filed Apr. 28, 2011, Tan. |
U.S. Appl. No. 13/167,764, filed Jun. 24, 2011, Li, Zongwang et al. |
U.S. Appl. No. 13/167,771, filed Jun. 24, 2011, Li, Zongwang et al. |
U.S. Appl. No. 13/167,775, filed Jun. 24, 2011, Li, Zongwang. |
U.S. Appl. No. 13/186,146, filed Jul. 19, 2011, Mathew et al. |
U.S. Appl. No. 13/186,213, filed Jul. 19, 2011, Mathew et al. |
U.S. Appl. No. 13/186,234, filed Jul. 19, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/186,251, filed Jul. 19, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/186,174, filed Jul. 19, 2011, Mathew et al. |
U.S. Appl. No. 13/213,751, filed Aug. 19, 2011, Zhang, Fan et al. |
U.S. Appl. No. 13/213,808, filed Aug. 19, 2011, Jin, Ming. |
U.S. Appl. No. 13/220,142, filed Aug. 29, 2011, Chang, Wu et al. |
U.S. Appl. No. 13/227,538, filed Sep. 8, 2011, Yang, Shaohua et al. |
U.S. Appl. No. 13/227,544, filed Sep. 8, 2011, Yang, Shaohua et al. |
U.S. Appl. No. 13/239,683, filed Sep. 22, 2011, Xu, Changyou. |
U.S. Appl. No. 13/239,719, filed Sep. 22, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/251,342, filed Oct. 2, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/269,832, filed Oct. 10, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/269,852, filed Oct. 10, 2011, Xia, Haitao et al. |
U.S. Appl. No. 13/284,819, filed Oct. 28, 2011, Tan, Weijun et al. |
U.S. Appl. No. 13/284,730, filed Oct. 28, 2011, Zhang, Fan et al. |
U.S. Appl. No. 13/284,754, filed Oct. 28, 2011, Zhang, Fan et al. |
U.S. Appl. No. 13/284,767, filed Oct. 28, 2011, Zhang, Fan et al. |
U.S. Appl. No. 13/284,826, filed Oct. 28, 2011, Tan, Weijun et al. |
U.S. Appl. No. 13/295,150, filed Nov. 14, 2011, Li, Zongwang et al. |
U.S. Appl. No. 13/295,160, filed Nov. 14, 2011, Li, Zongwang et al. |
U.S. Appl. No. 13/251,340, filed Oct. 3, 2011, Xia, Haitao et al. |
Amer et al; Design Issues for a Shingled Write Disk System; MSST IEEE 26th Symposium; May 2010. |
Bahl et al.; Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate; IEEE Trans. Inform. Theory; vol. 20, pp. 284-287; Mar. 1974. |
Casado et al.; Multiple-rate low-density parity-check codes with constant blocklength; IEEE Transactions on Communications, Jan. 2009, vol. 57, pp-75-83. |
Collins and Hizlan; Determinate State Convolutional Codes; IEEE Transactions on Communications; Dec. 1993. |
Eleftheriou, E. et al.; Low-Density Parity-Check Codes for Digital Subscriber Lines; Proc ICC 2002, pp. 1752-1757. |
Fisher, R et al.; Adaptive Thresholding [online] 2003 [retrieved on May 28, 2010] Retrieved from the Internet <URL: http//homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm. |
Fossnorier, Marc P.C.; Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Maricies; IEEE Transactions on Information Theory, vol. 50, No. 8, Aug. 8, 2004. |
Gibson et al.; Directions for Shingled-Write and Two-Dimensional Magnetic Recording System; Architectures: Synergies with Solid-State Disks; Carnegie Mellon University; May 1, 2009. |
K. Gunnam et al.; Next Generation Iterative LDPC Solutions for Magnetic Recording Storage; Invited Paper; The Asilomar Conference on Signals, Systems and Computers; Nov. 2008. |
Yeo et al.; VLSI Architecture for Iterative Decoders in Magnetic Storage Channels; Mar. 2001, pp. 748-755, IEEE trans. Magnetics, vol. 37, No. 2. |
Youn et al.; BER Performance Due to Irregularity of Row-Weight Distribution of the Parity-Check Matrix in Irregular LDPC Codes for 10-Gb/s Optical Signals; Journal of Lightweight Technology; vol. 23; Sep. 2005. |
Zhong et al.; Area-Efficient Min-Sum Decoder VLSI Architecture for High-Rate QC-LDPC Codes in Magnetic Recording; pp. 1-15, Submitted 2006, not yet published. |
Zhong; Block-LDPC: A Practical LDPC Coding System Design Approach; IEEE Trans. on Circuits; Regular Papers; vol. 5, No. 4, pp. 766-775, Apr. 2005. |
Zhong et al.; Design of VLSI Implementation-Oriented LDPC Codes; IEEE; pp. 670-673; 2003. |
Zhong et al.; High-Rate Quasi-Cyclic LDPC Codes for Magnetic Recording Channel for Low Error Floor; ISCAS, IEEE pp. 3546-3549; May 2006. |
Zhong et al.; Iterative MAX-LOG-MAP and LDPC Detector/Decoder Hardware Implementation for Magnetic Read Channel; SRC TECHRON; pp. 1-4, Oct. 2005. |
Zhong et al.; Joint Code-Encoder Design for LDPC Coding System VLSI Implementation; ISCAS, IEEE pp. 389-392, May 2004. |
Zhong et al.; Quasi Cyclic LDPC Codes for the Magnetic Recording Channel: Code Design and VSLI Implementation; IEEE Transactions on Magnetics, v. 43, pp. 1118-23; Mar. 2007. |
Zhong; VLSI Architecture of LDPC Based Signal Detection and Coding System for Magnetic Recording Channel; Thesis, RPI, Troy, NY; pp. 1-95, May 2006. |
Sari H et al; Transmission Techniques for Digital Terrestrial TV Broadcasting; IEEE Communications Magazine; IEEE Service Center; NY, NY; vol. 33, No. 2, Feb. 1995. |
Selvarathinam, A.; Low Density Parity-Check Decoder Architecture for High Throughput Optical Fiber Channels; IEEE International Conference on Computer Design (ICCD '03) 2003. |
Shu Lin, Ryan; Channel Codes, Classical and Modern; 2009, Cambridge University Press; pp. 213-222. |
Vasic, B.; High-Rate Low-Density Parity-Check Codes Based on Anti-Pasch Affine Geometries; Proc ICC 2002, pp. 1332-1336. |
Vasic, B.; High-Rate Girth-Eight Codes on Rectangular Integer Lattices; IEEE Trans. Communications, vol. 52, Aug. 2004, pp. 1248-1252. |
Wang, Y et al.; A Soft Decision Decoding Scheme for Wireless COFDM with Application to DVB-T; IEEE Trans. on Consumer Elec.; IEEE Service Center; NY, NY;, vol. 50, No. 1; Feb. 2004. |
Weon-Cheol Lee et al.; Vitierbi Decoding Method Using Channel State Info in COFDM System; IEEE Trans. on Consumer Elect.; IEEE Service Center; NY, NY,; vol. 45, No. 3, Aug. 1999. |
Xia et al.; A Chase-GMD algorithm of Reed-Solomon codes on Perpendicular Channels; IEEE Transactions on Magnetics; vol. 42, pp. 2603-2605; Oct. 2006. |
Xia et al.; Reliability-based Reed-Solomon decoding for magnetic recording channels; IEEE International Conference on Communication; pp. 1977-1981; May 2008. |
K. Gunnam et al.; Value-ReUse Properties of Min-Sum for GF(q) (dated Oct. 2006) Dept. of ECE, Texas A&M University Technical Note, published about Aug. 2010. |
K. Gunnam et al.; Value-ReUse Properties of Min-Sum for GF(q) (dated Jul. 2008) Dept. of ECE, Texas A&M University Technical Note, published about Aug. 2010. |
K.Gunnam; Area and Energy Efficient VLSI Architectures for Low-Density Parity-Check Decoders Using an On-The-Fly Computation; dissertation at Texas A&M University, Dec. 2006. |
Han & Ryan; Pinning Techniques for Low-Floor Detection/Decoding of LDPC-Coded Partial Response Channels; 5th International Symposium on Turbo Codes & Related Topics; 2008. |
Hagenauer, J. et al.; A Viterbi Algorithm with Soft-Decision Outputs and its Applications, in Proc.; IEEE Globecom; pp. 47. 11-477; Dallas, TX; Nov. 1989. |
Lee et al.; Partial Zero-Forcing Adaptive MMSE Receiver for DS-CDMA Uplink in Multicell Environments; IEEE Transactions on Vehicular Tech.; vol. 51, No. 5; Sep. 2002. |
Lin et al.; An efficient VLSI Architecture for non-binary LDPC decoders—IEEE Transaction on Circuits and Systems II, vol. 57, Issue 1 (Jan. 2010) pp. 51-55. |
Mohsenin et al.; Split Row: A Reduced Complexity, High Throughput LDPC Decoder Architecture; pp. 1-6. |
Moon et al.; Pattern-dependent Noise Prediction in Signal-dependent Noise; IEEE JSAC, vol. 19, No. 4; pp. 730-743; Apr. 2001. |
Perisa et al.; Frequency Offset Estimation Based on Phase Offsets Between Sample Correlations; Dept. of Info. Tech. University of ULM; 2005. |
Unknown; Auto Threshold and Auto Local Threshold; [online] [retrieved May 28, 2010 from the Internet: <URL:http://www.dentristy.bham.ac.uk/landinig/software/autoth. |
Number | Date | Country | |
---|---|---|---|
20130223199 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13186174 | Jul 2011 | US |
Child | 13591980 | US | |
Parent | 13186197 | Jul 2011 | US |
Child | 13186174 | US | |
Parent | 13186213 | Jul 2011 | US |
Child | 13186197 | US | |
Parent | 13250246 | Sep 2011 | US |
Child | 13186213 | US | |
Parent | 13460204 | Apr 2012 | US |
Child | 13250246 | US |