Storage module, method of operating a laboratory automation system and laboratory automation system

Information

  • Patent Grant
  • 11226348
  • Patent Number
    11,226,348
  • Date Filed
    Friday, December 15, 2017
    6 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
A storage module for a laboratory automation system, a method of operating a laboratory automation system, and a laboratory automation system are presented. Items used by laboratory stations are stored centrally in a storage module and can be transported to the laboratory stations using a laboratory sample distribution system.
Description
BACKGROUND

The present disclosure relates to a storage module for a laboratory automation system, to a method of operating a laboratory automation system and to a laboratory automation system.


Laboratory automation systems can be used in order to provide for a partial or full automation of a laboratory. For that purpose, a laboratory automation system typically comprises a number of laboratory stations and a laboratory sample distribution system. Such laboratory sample distribution systems provide for a high throughput and for reliable operation.


Typical laboratory sample distribution systems are adapted to transport samples to be analyzed to the laboratory stations and away from the laboratory stations. However, it is common that reagents, disposables, labels or other items needed by the laboratory stations are provided to them externally, for example by manual operation or by separate supply means. This requires additional effort and high storage capacity.


Therefore, there is a need for a laboratory automation system that is able to further integrate and/or optimize supply of items to laboratory stations.


SUMMARY

According to the present disclosure, a storage module for a laboratory automation system is presented. The laboratory automation system can comprise a plurality of laboratory stations and a laboratory sample distribution system. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by the laboratory stations. The laboratory sample distribution system can also comprise a transport plane. The transport plane can be adapted to support the sample container carriers. The laboratory sample distribution system can also comprise a driver. The driver can be adapted to move the sample container carriers on the transport plane. The laboratory sample distribution system can also comprise a control device. The control device can be configured to control the driver such that the sample container carriers can move over the transport plane along predetermined transport paths. The storage module can comprise a number of storage areas for storing items that are to be transported by the laboratory sample distribution system. The storage areas can be adapted to dispose the stored items to sample container carriers and/or to transport carriers. The transport carriers can be adapted to carry one or more items. The driver can be adapted to move the transport carriers on the transport plane. The control device can be configured to control the driver such that the transport carriers can move over the transport plane along predetermined transport paths. The storage module can be adapted to be attached to the laboratory sample distribution system.


In accordance with one embodiment of the present disclosure, a method of operating a laboratory automation system is presented. The laboratory automation system can comprise a plurality of laboratory stations, a laboratory sample distribution system and a storage module. The method can comprise detecting that at least one type of items is missing or is running short at one of the laboratory stations, in response to the detecting, disposing a number of such items from one of a number of storage areas of the storage module, and transporting the items to the laboratory stations using the laboratory sample distribution system.


In accordance with another embodiment of the present disclosure, a laboratory automation system is presented. The laboratory automation system can comprise a plurality of laboratory stations and a laboratory sample distribution system comprising a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by the laboratory stations. The laboratory sample distribution system can also comprise a transport plane, wherein the transport plane is adapted to support the sample container carriers, a driver, wherein the driver is adapted to move the sample container carriers on the transport plane, and a control device, wherein the control device is configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths. The laboratory automation system can comprise a storage module attached to the laboratory sample distribution system and a process control unit. The process control unit can be configured to control the laboratory stations, the laboratory sample distribution system, and the storage module such that the above method is performed.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a laboratory automation system that is able to further integrate and/or optimize supply of items to laboratory stations. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a laboratory automation system comprising a storage module adapted to perform a method according to an embodiment of the present disclosure.



FIG. 2 illustrates schematically a laboratory automation system comprising a storage module adapted to perform a method according to another embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A storage module for a laboratory automation system is presented. The laboratory automation system, which is not part of the storage module but is an element or arrangement within which the storage module can be operated, can comprise a plurality of laboratory stations and a laboratory sample distribution system.


The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by the laboratory stations.


The laboratory sample distribution system can comprise a transport plane. The transport plane can be adapted to support the sample container carriers.


The laboratory sample distribution system can comprise a driver. The driver can be adapted to move the sample container carriers on (over) the transport plane.


The laboratory sample distribution system can further comprise a control device. The control device can be configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths. Especially, the sample container carriers can move simultaneously and independently from one another along the predetermined transport paths.


With regard to the laboratory automation system with which the storage module can be operated, reference can be made to the description of an inventive laboratory automation system as described further below in this application.


The storage module can be adapted to be attached or adapted to be coupled to the laboratory sample distribution system. The storage module can comprise a number of storage areas for storing items that are to be transported by the laboratory sample distribution system.


The storage areas can be adapted to dispose the stored items to the sample container carriers, and/or to transport carriers. The sample container carriers can be the sample container carriers of the laboratory sample distribution system.


The transport carriers can be adapted to carry one or more of the stored or to be stored items. The driver can be adapted to move the transport carriers on the transport plane. The control device can be configured to control the driver such that the transport carriers can move over the transport plane along predetermined transport paths.


The storage module can provides for central storing of disposables, reagents, labels or other items that are needed by the laboratory stations. The storage module can be further adapted to seamlessly integrate with the laboratory sample distribution system such that the laboratory sample distribution system can be used to transport items or disposables from the storage module to the laboratory stations.


The sample container carriers can be available due to the normal functionality of the laboratory sample distribution system. Thus, these entities can also be used for transporting the stored items from the storage module to the laboratory stations or to other entities.


The transport carriers can typically be entities that can be specifically adapted to transport the items from the storage module to the laboratory stations or other entities. The transport carriers may typically not used to transport samples to, from or between the laboratory stations.


It can be noted that the transport carriers can, for example, be handled by the control device like the sample container carriers. For example, the transport carriers can be included in the conventional planning or distribution of transport paths, a task that is typically performed for the sample container carriers. However, it can be noted that it may be possible to specifically handle the transport carriers, for example taking into account different sizes or maximum speeds.


According to an embodiment, at least one handler can be assigned to the storage areas. The handler can be adapted to effect the disposal of the stored items to the sample container carriers or to the transport carriers by loading the items from the storage areas on/to the sample container carriers or on/to the transport carriers.


Such handlers can be used in order to extract stored items from the storage module in order to transport them to the laboratory stations. Manual intervention may typically not be necessary for that purpose.


According to an embodiment, the storage module can comprise a processor. The processor can be adapted to process the stored items, especially before they are transported by the laboratory sample distribution system.


The processing of the stored items may comprise shaking and/or mixing and/or heating and/or cooling the stored item and/or adding another item to the stored item and/or labeling or capping and/or uncapping the container of the stored item.


According to an embodiment, the processor can comprise a temperature control unit and/or a shaker unit and/or a mixer unit and/or an aliquoter unit and/or a label unit and/or a capping unit and/or a calibration substance preparation unit adapted to prepare a calibration substance. The temperature control unit may be adapted to control the temperature of the stored item by cooling or heating. The aliquoter may be adapted to aliquot the stored item. The label unit may label a container comprising the stored item. The capping unit may decap or recap a cap from/to the container comprising the stored item. The calibration substance preparation unit may prepare the calibration substance required for calibration of at least one of the laboratory stations.


According to a further embodiment, the processor can be adapted to plan, cause and/or control the processing of the stored items. A processing of the stored items may be required after a specific time period. The time period may be the time after an event, e.g., the last processing of the stored items or the last calibration of the laboratory stations. The processor may initiate the processing of the stored items.


The processor may be adapted to provide the prepared calibration substance to the laboratory sample distribution system. The laboratory sample distribution system can then be adapted to transport the prepared calibration substance to the laboratory station to be calibrated. The processor may be adapted to initiate a calibration process of a laboratory station.


A method of operating a laboratory automation system is presented. The laboratory automation system can comprise a plurality of laboratory stations, a laboratory sample distribution system and a storage module.


The method can comprise detecting that (if) at least one type of items is missing or is running short at one of the laboratory stations, in response to the detecting, disposing a number of such items from one of a number of storage areas of the storage module, and transporting the items to the laboratory stations using the laboratory sample distribution system.


Thus, the laboratory sample distribution system can be advantageously used in order to automatically supply reagents, disposables or other items to the laboratory stations. There may be no need to install separate supply systems and there may be further no need for manual intervention or control. It can be assured that the laboratory stations can be supplied with needed items.


According to an embodiment, the items can be transported by sample container carriers of the laboratory sample distribution system. According to another embodiment, the items can be transported by transport carriers.


According to an embodiment, the method can comprise detecting that at least one storage area is empty or is running short of items and, in response to the detecting, generating a signal indicating that the storage means should be filled and/or replaced.


This can allow not only for an automatic supply of the laboratory stations, but also for an automatic filling or replacement of the storage areas. Filling can, for example, mean that liquids or other items can be placed into a fixed container. Replacement can, for example, mean that a container storing liquids or other items can be replaced as a whole.


According to an embodiment, at least some of the items can be reagents, tubes, tips, pipetting heads, labels, cartridges comprising a set of reagents used in the laboratory stations and/or other consumables used by the laboratory stations.


According to an embodiment, at least some of the items can be calibration substances and/or substances required for preparation calibration substances.


According to an embodiment, at least some of the items can be liquids and can be transported using containers of the transport carriers. This can allow for an efficient distribution of liquids.


According to an embodiment, detecting that a type of items is running short can comprise detecting that a number or amount of such an item is less than about 10% of a maximum capacity. Such a value has been proven suitable in typical applications. It can be noted that also other values can be used such as, for example, 5%, 8%, 12% or 15%.


A laboratory automation system comprising a plurality of laboratory stations and a laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by the laboratory stations. The laboratory sample distribution system can comprise a transport plane. The transport plane can be adapted to support the sample container carriers. The laboratory sample distribution system can comprises a driver. The driver can be adapted to move the sample container carriers on the transport plane. The laboratory sample distribution system can further comprise a control device. The control device can be configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths.


The laboratory automation system can further comprise a storage module that is attached (coupled, assigned) to the laboratory sample distribution system.


The laboratory automation system can further comprise process control unit. The process control unit can be configured to control the laboratory stations, the laboratory sample distribution system and the storage module such that the above method can be performed. The process control unit can be different from the control device of the laboratory sample distribution system, but can also be implemented in the same device as the control device, for example in a control unit embodied as a microprocessor and corresponding program storage.


The sample containers can typically be designed as tubes made of glass or transparent plastic and typically can have an opening at an upper end. The sample containers can be used to contain, store and transport samples such as blood samples or chemical samples.


The transport plane can also be denoted as transport surface. The transport plane can support the sample container carriers, what can also be denoted as carrying the sample container carriers.


The driver can comprise electro-magnetic actuators. The electro-magnetic actuators can be typically built as electromagnets, having a solenoid surrounding a ferromagnetic core. These electro-magnetic actuators may be energized in order to provide for a magnetic field that can be used to move or drive the sample container carriers. For that purpose, at least one magnetically active device can be comprised in each sample container carrier, wherein the magnetically active device may be a permanent magnet. Alternatively or additionally, an electromagnet can be used. Accordingly, at least one magnetically active device can be comprised in each transport carrier, wherein the magnetically active device may be a permanent magnet. Alternatively or additionally, an electromagnet can be used.


The control device can typically be a microprocessor, a microcontroller, a field-programmable gate array, a standard computer or a similar device. In a typical embodiment, the control device can comprise a processor and storage. Program code can be stored in the storage in order to control the behavior of the processor when the storage code is executed on the processor. The same applies for the process control unit.


The sample container carriers and the transport carriers can typically be adapted to move in two dimensions on the transport plane. For that purpose, electro-magnetic actuators may be arranged in two dimensions below the transport plane. The electro-magnetic actuators may be arranged in a grid or matrix having rows and columns along which the electro-magnetic actuators are arranged.


According to an embodiment, the storage module can be an inventive storage module. With respect to the storage module, all embodiments and variations as discussed herein can be used.


According to an embodiment, the laboratory automation system can comprise a number of transport carriers adapted to carry one or more items. The driver can be adapted to move the transport carriers on the transport plane. The control device can be configured to control the driver such that the transport carriers can move over the transport plane along predetermined transport paths.


It can be noted that alternatively to the embodiment as described above with respect to the driver having electro-magnetic actuators also self-driving transport carriers or sample container carriers can be used. For example, such transport carriers or sample container carriers can have wheels propelled by motors and/or being controllable with respect to a respective angle in order to control movement of the respective carrier. Sample container carriers can also be equipped with means for determining the respective position.


The laboratory stations can, for example, be pre-analytical, analytical and/or post-analytical (laboratory) stations, and a laboratory sample distribution system as described above can be adapted to transport the sample container carriers and/or sample containers between the stations. The stations will be arranged adjacent to the laboratory sample distribution system.


Pre-analytical stations may be adapted to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.


Analytical stations may be adapted to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.


Post-analytical stations may be adapted to perform any kind of post-processing of samples, sample containers and/or sample container carriers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.


Referring initially to FIG. 1, FIG. 1 shows a laboratory automation system 10. The laboratory automation system 10 can comprise a laboratory sample distribution system 100, a first laboratory station 20, a second laboratory station 25 and a storage module 200. The laboratory stations 20, 25 and the storage module 200 can be operatively connected to the laboratory sample distribution system 100. It can be noted that the two shown laboratory stations 20, 25 are only shown exemplarily and that typical laboratory automation systems 10 can have more than two laboratory stations.


The laboratory sample distribution system 100 can comprise a transport plane 110. Below the transport plane 110, a plurality of electro-magnetic actuators 120 can be provided. Each electro-magnetic actuator 120 can comprise a ferromagnetic core 125.


Over the transport plane 110, a plurality of position sensors 130 can be distributed. These position sensors 130 are embodied as Hall sensors.


On the transport plane 110, sample container carriers 140 can move. For exemplary purposes, there are shown two sample container carriers 140, each carrying a respective sample container 145. It can be noted that these two sample container carriers 140 are shown only exemplarily and that typical laboratory automation systems 10 can comprise more than two sample container carriers.


Each sample container carrier 140 can comprise a permanent magnet that is not visible in FIG. 1. Thus, the sample container carriers 140 can be driven by magnetic fields generated by the electro-magnetic actuators 120.


The sample distribution system 100 can further comprise a control device in the form of a control unit 150 that can be operatively connected to the electro-magnetic actuators 120 and to the position sensors 130. Thus, the control unit 150 can drive the electro-magnetic actuators 120 such that they can generate respective magnetic fields in order to propel the sample container carriers 140 and to propel transport carriers 230 along respective transport paths. Further, the control unit 150 can monitor the position of the sample container carriers 140 and the position of the transport carriers 230 by the position sensors 130. The control unit 150 can also act as a process control unit to control the entire laboratory automation system 10.


The storage module 200 can comprises a first storage area in the form of a first container 210, a second storage area in the form of a second container 220 and a processor 225. The processor 225 may comprise a calibration substance preparation unit and/or a temperature control unit. The first container 210 can be adapted to store a pulverized item 212, wherein the second container 220 can be adapted to store a liquid item 222. The temperature control unit can be adapted to heat or cool the item 212 and/or the item 222. The items 212, 222 can be used by the laboratory stations 20, 25 during analyzing of samples and/or during calibration.


The calibration substance preparation unit may be adapted to prepare a calibration substance, e.g. by mixing the items 212 and 222. The calibration substance may be used by the laboratory stations 20 and 25 for calibration purposes without any further modification.


The first container 210 can comprise a first handler in the form of a slide 214. By the slide 214, the first item 212 can be disposed on a carrier standing on the transport plane 110 in a specific position besides the storage module 200.


For transporting the first item 212, the transport carrier 230 can be provided on the transport plane 110. The transport carrier 230 can also comprise a permanent magnet and can be handled by the control unit 150 as if it would be a sample container carrier 140. However, the transport carrier 230 may not be adapted to transport a sample container 145, but can have a recess 235 in which the first item 212 can be stored. Thus, the first item 212 can be transported to the laboratory stations 20, 25 by the transport carrier 230.


The second container 220 comprises a second handler in the form of a standpipe 224. The standpipe 224 can have a height such that a sample container 145 contained in a sample container carrier 140 can be placed below it. This can allow a filling of the sample container 145 with the liquid second item 222. Thus, the second item 222 can be transported to the laboratory stations 20, 25 using sample container carriers 140 carrying sample containers 145.


The storage areas 200 in general can provide for a central storage of items 212, 222 such that no further supply may be required for the laboratory stations 20, 25. It can allow further to automate replacement of items in the laboratory stations 20, 25, because the laboratory stations 20, 25 can easily report to the control unit 150 that a specific item is running short or that calibration is required, and refilling or the preparation of the item 212, 222 can easily be accomplished by processing and/or disposal of the specific item 212, 222 at the storage module 200 and by transporting the specific item 212, 222 to the respective analyzing station 20, 25. For this purpose, the sample distribution system 100 can be used without further modification.


It can be noted that the two items 212, 222 are only shown exemplarily in the embodiment and that in a typical laboratory automation system 10, more than two items can be provided to the laboratory stations 20, 25. This can be accomplished in a similar way.



FIG. 2 schematically shows a further embodiment of the laboratory automation system 10. The laboratory automation system 10 can comprise the laboratory sample distribution system 100, the first laboratory station 20, the second laboratory station 25 and the storage module 200.


According to this embodiment, the storage module 200 can comprise a number (e.g., 7) of processor 225, e.g., incorporating a temperature control unit and/or a shaker unit and/or a mixer unit and/or an aliquoter unit and/or a label unit and/or a capping unit and/or a calibration substance preparation unit adapted to prepare a calibration substance. The storage module 200 can further comprise an internal transfer unit 111 e.g., for transporting substances required for the preparation of the calibration substance to a specific processor 225 forming the calibration substance preparation unit. The internal transfer unit 111 may be a revolving transfer machine, a carousel machine or may use a transport mechanism corresponding to the laboratory sample distribution system 100.


The storage module 200 can further comprise a transfer unit 226 for filling of a sample container with the processed calibration substance. The sample container can be contained in the sample container carrier 140. The transfer unit 226 may use a transport mechanism corresponding to the laboratory sample distribution system 100.


Thus, the processed calibration substance may be transported to the laboratory station 20 and/or to the laboratory station 25 for calibration using the sample container carriers 140.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A laboratory automation system, the laboratory automation system comprising: a plurality of laboratory stations;a laboratory sample distribution system comprising a number of sample container carriers, wherein the sample container carriers are configured to carry one or more sample containers, wherein the sample containers comprise samples to be analyzed by the laboratory stations, a transport plane, wherein the transport plane is configured to support the sample container carriers, a driver, wherein the driver is configured to move the sample container carriers on the transport plane, anda control device, wherein the control device is configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths;a storage module attached to the laboratory sample distribution system, comprising a plurality storage areas configured for storing items that are to be transported by the laboratory sample distribution system, wherein the storage areas are configured to dispose the stored items to sample container carriers and/or to transport carriers, wherein the transport carriers are configured to carry one or more items, wherein the driver is configured to move the transport carriers on the transport plane, wherein the control device is configured to control the driver such that the transport carriers move over the transport plane along predetermined transport paths, a processor, wherein the processor is configured to process the stored items and wherein the processor comprises a calibration substance preparation unit configured to prepare a calibration substance,an internal transfer unit configured for transporting substances required for preparation of the calibration substance calibration substance preparation unit, anda transfer unit for filling of a sample container with the calibration substance; anda process control unit, wherein the process control unit is configured to control the laboratory stations, the laboratory sample distribution system, and the storage module and wherein the process control unit is configured to:detect that items are missing or are running short at one of the laboratory stations,in response to the detecting, dispose a number of such items from one of a number of storage areas of the storage module, andtransport the items to the laboratory stations using the laboratory sample distribution system, wherein the items are at least one of reagents, tubes, tips, pipetting heads, labels, cartridges comprising a set of reagents used in the laboratory stations and/or other consumables used by the laboratory stations, wherein the items are transported by the sample container carriers of the laboratory sample distribution system.
  • 2. The storage module according to claim 1, wherein handlers are assigned to the storage areas and wherein the handlers are configured to effect the disposal of the stored items to the sample container carriers or to the transport carriers by loading the items from the storage areas on the sample container carriers or on the transport carriers.
  • 3. The storage module according to claim 1, wherein the processor is configured to plan and/or cause and/or control the processing of the stored items and/or is configured to cause disposal of the prepared calibration substance to the sample container carriers and/or to the transport carriers.
  • 4. The laboratory automation system according to claim 1, further comprises, detecting that at least one storage area is empty or is running short of items stored by the storage areas; andin response to the detecting, generating a signal indicating that the storage areas should be filled and/or replaced.
  • 5. The laboratory automation system method according to claim 1, wherein at least some of the items are liquids and are transported using containers of the transport carriers.
  • 6. The laboratory automation system method according to claim 1, wherein the detecting that a type of items is running short comprises detecting that a number, or amount, of such an item is less than 10% of a maximum capacity.
Priority Claims (1)
Number Date Country Kind
15175101 Jul 2015 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2016/065605, filed Jul. 1, 2016, which is based on and claims priority to EP 15175101.3, filed Jul. 2, 2015, which is hereby incorporated by reference.

US Referenced Citations (189)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5351801 Markin et al. Oct 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
6579717 Matsubara et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9056720 Van De Loecht et al. Jun 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
10288634 Kaeppeli May 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050260102 Angelantoni et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090117620 Fritchie May 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20100324722 Fritchie et al. Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise Feb 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150140668 Mellars et al. May 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276639 Spath et al. Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170096307 Mahmudimanesh et al. Apr 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180074087 Heise et al. Mar 2018 A1
20180128848 Schneider et al. May 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180217176 Sinz et al. Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180340951 Kaeppell Nov 2018 A1
20180340952 Kaeppeli et al. Nov 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider et al. Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
20190285660 Kopp et al. Sep 2019 A1
Foreign Referenced Citations (91)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0301583 Apr 1994 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-43962 Feb 1992 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012142250 Oct 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177087 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Sep. 29, 2016, in Application No. PCT/EP2016/065605, 5 pages.
Related Publications (1)
Number Date Country
20180106821 A1 Apr 2018 US
Continuations (1)
Number Date Country
Parent PCT/EP2016/065605 Jul 2016 US
Child 15843867 US