Storage of application specific profiles correlating to document versions

Abstract
A computer system that includes a processor for operating a software application in the computer system. The software application provides for creation, storage, and retrieval of a file, the file having a corresponding profile that the software application uses for at least the purpose of preparing the software application to display the file upon its retrieval by the software application. Also included is a plurality of storage media that are communicatively coupled to the processor. A storage management module distributes stored files and their accompanying profiles among the plurality of storage media according to predetermined patterns. One of such predetermined patterns is separate storage of a file and the file's corresponding profile.
Description
TECHNICAL FIELD

The present invention relates to storage and retrieval configurations in a computer system, in particular to storage of application specific profiles that correlate to various document versions of an application and retrieval of the same.


BACKGROUND

Typical storage and retrieval configurations in a computer system provide a user with resources to store digital files such as word processing files, email files, etc., and to retrieve the digital files when desired. These digital files of the computer system are commonly backed up to a new location on the computer system itself or even to a completely different and separate storage facility such as a magnetic tape, a different disk drive, etc. Backing up digital files provides an alternate source(s) to access the digital files when the digital files have become corrupted, lost, written over, no longer accessible due to hardware failure, etc. Retrieving or storing a digital file in this manner may consume inordinate amounts of time, especially when the file was stored in a location such as a magnetic tape.


Many other problems and disadvantages of the prior art will become apparent to one skilled in the art after comparing such prior art with the present invention as described herein.


SUMMARY

Various aspects of the present invention may be realized through a computer system that includes a processor for operating a software application in the computer system. The software application provides for creation, storage, and retrieval of a file, the file having a corresponding profile that the software application uses for at least the purpose of preparing the software application to display the file upon its retrieval by the software application. Also included is a plurality of storage media that are communicatively coupled to the processor. A storage management module distributes stored files and their accompanying profiles among the plurality of storage media according to predetermined patterns. One of such predetermined patterns is separate storage of a file and the file's corresponding profile.


The computer system may have at least one of the plurality of storage media located locally, or on the other hand located remotely, or even both locally and remotely. The separate storage by the storage management module in the computer system is configured to provide more rapid retrieval of the application specific profile than of the file associated with the application specific profile. The profiles that are stored among the plurality of storage media often include different profiles for different versions of a corresponding file. In some embodiments of the present invention, the storage management module provides concurrent access of the profile and the file. The profile is typically retrieved prior to the file and sets up the software application in preparation for receipt of the file.


Various aspects of the present invention may also be realized through an application specific profile storage and retrieval system that includes at least a software application that creates files with corresponding profiles specific to the software application and each of the files that are created. The software application is operable by a processor and a plurality of storage media are selectively used by the processor to store the application specific profiles separately from the files. A storage management module is included that is operable by the processor and that manages storage of the application specific profiles and the files such that application specific profiles may be retrieved separately from the corresponding file itself. The application specific profile storage and retrieval system may have many variations, including variations such as listed in relation to the computer system described above.


A method for storage and retrieval in a computer system according to principles of the present invention may also be realized by, not necessarily in the following order, creating a file with a software application that creates a corresponding profile that accompanies the file with each access of the file, a new profile being created at least each time the file is saved; sending the file, with the software application, to a storage management module that manages storage of the file with its accompanying profile; storing the file and its accompanying profile to separate storage locations in the computer system; requesting for the retrieval of the file with the software application such that the storage management module retrieves the file with its accompanying profile as though the file and its accompanying profile were located in a single position; and formatting the software application with the retrieved profile prior to display of the file with the software application.


The method may require that the software application is selected from the group consisting of a word processor, an engineering graphics program, a standard graphics program, and a web browser. Further, a different profile is commonly stored with the storage of each version of the file as the file is created. Finally, the storage management module typically distributes different files and versions of those files in a first set of storage media and stores different profiles for each of the files and version of those files in a second set of storage media.


Other aspects of the present invention will become apparent with further reference to the drawings and specification which follow.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be obtained when the following detailed description of the drawings is considered in conjunction with the following drawings.



FIG. 1 is a block diagram of an exemplary computer system that provides separate storage of files that are created by a software application and profiles that accompany different versions of each of the files that are created by the software application.



FIG. 2 is a block diagram of an exemplary storage system that is illustrated in greater detail than the computer system of FIG. 1.



FIG. 3 is a block diagram of an exemplary computer system for providing separate storage locations for a file of a software application and the application specific profiles of the file according to principles of the present invention.



FIG. 4 is a block diagram of an exemplary logical view storage that may be used in the computer system of FIG. 3.



FIG. 5 is a block diagram of exemplary storage policies which may be found in the embodiments of FIGS. 3 and 4.



FIG. 6 is a block diagram of exemplary storage sequences such as may be found in FIG. 5.



FIG. 7 is a block diagram of the initial storage sequence selection of FIG. 5.



FIG. 8 is a block diagram of the storage sequence reselection of FIG. 5.



FIG. 9 is a block diagram of the storage sequence adaptation of FIG. 5.



FIG. 10 illustrates an exemplary embodiment of a data and storage management system that operates according to principles of the present invention.



FIG. 11 illustrates an exemplary embodiment of a data and storage management system that operates according to principles of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of an exemplary computer system 100 that provides separate storage of files (digital documents, graphics files, data compilations, etc., herein referred to as “files”) that are created by a software application and profiles that accompany different versions of the files that are created. The computer system 100 includes a processor 102 that is used to operate a software application 104 that creates the files that are stored for later retrieval. The computer system 100 incorporates a storage management module 106 to organize the file storage. For ease of understanding, the computer system 100 is illustrated as having two separate storage locations, i.e., a profile storage 108 and an other storage 110. The profile storage 108 is designed for quick access of profile data by the storage management module 106, the data that is stored therein being different profiles 112 that are generated during use of the software application 104 and saved when different versions of the file of the software application 104 are saved. Although each of the following figures refer only to storage or retrieval systems, it is to be understood that the embodiments of the figures apply to both storage and retrieval.


The software application 104 could be any number of applications such as a word processor, a graphic design program, a web browser, etc., as long as the software application 104 has a profile 112 corresponding to files that are created or edited with the software program 104. The profile 112 contains different settings that are used during editing of the file with the software program 104. For example, when the software program 104 is a word processor such as Microsoft Word, a profile may contain numerous settings, such as a setting to prevent “Autocorrecting” (i.e., automatic correcting of certain misspelled text such as automatically transposing the “t” and the “h” in the three letter string “hte”), or a setting that contains various “bookmarks” of a file (i.e., a transparent location marker for quickly moving to a specific location in a document). The profile 112 may periodically change as a file is edited by the software application 104, but when the file is saved and editing is discontinued, the most recently used profile is saved with the file so that upon retrieval of the file at a later date the software application 104 will have a profile that is familiar to the last user and editing may continue at the same point that it ended on. Of course, the profile 112 retrieval and set up adds processing time to the computer system 100 when a file is retrieved. Advantageously, the storage management module 106 is configured to retrieve the profile 112 from the profile storage 108 concurrently with retrieval of the file from the other storage 110. In this manner, oftentimes the profile 112 is set up in the software application 104 prior to retrieval of the file from the other storage 110 and the delay in the profile 112 set up does not cause further delay in file retrieval.


The storage management module 106 may be a single module or a distributed computing system and, although illustrated as being either a storage or a retrieval module in the following figures, operates as both a storage and retrieval module. When operating as a retrieval module, the software application 104 has immediate access to the profile 112 regardless of the location of the file that is being retrieved from the other storage 110 by the software application 104. As stated, this immediate access of the profile 112 is advantageous, among other reasons, because the software application 104 is given time to set up while the requested file is being retrieved rather than performing set up after the requested file is finally retrieved. In other words, user specific settings for a particular file are immediately available to the software application 104 regardless of the file or version of the file that is being retrieved.


Concurrent access of the profile 112 from the profile storage 108 and the corresponding file data from the other storage 110 allows the software application 104 to be set up with user specific settings while the file is being retrieved. In this manner, when the file of the other storage 110 is viewed, the file has a familiar look to the most recent user, e.g., the user that has requested it. Of course, separate retrieval of the profile 112 requires separate storage of the same and as will be apparent and understood in the accompanying descriptions of the illustrated embodiments.



FIG. 2 is a block diagram of an exemplary storage system 200 that is illustrated in greater detail than the computer system 100. The storage system 200 includes a computing device 202, a computing device 204, and a computing device 206 that are interconnected and communicate with one another on a network 207, such as an ethernet network. The computing device 206 includes magnetic disc media 208 for storage of data that the computing device 206 receives from the computing device 202.


The computing device 202 includes software applications 210 and installed file system 212. When data is to be stored from the software application 210, the installed file system 212 begins interacting with a manager module 214 of the computing device 204. The manager module 214 includes storage policies 216, creation tools 218, and a master storage and backup map 220. In this embodiment, when the software application 210 is directed to store data, the data is sent to the installed file system and then the manager module 214 examines the storage policies 216 to determine the appropriate location for storage of the data and the accompanying profile. The master map 220 includes further information for directing the data to be sent to the computing device 206 where a media module 222 receives the data and the data is then stored in the appropriate storage media. A data index 224 in the media module 222 contains still further information regarding the location to store the data. From computing device 206, the data may be stored in the magnetic disc media 208 or an optical media 226.


The master storage and backup map 220 may direct the data to be stored in a computing device 228, rather than the computing device 206. In the event that data is to be stored in the computing device 228, a media module 230 determines exactly where the data is to be stored and updates a data index 232 when the data is stored in one of the storage media such as the optical media 226 or a magnetic tape media 234.


The master storage and backup map 220 could also send the data to a computing device 236 where a media module 238 determines that the data will be placed at a different location and this information is updated in a data index 240 before the data is finally sent to other storage 242.


As illustrated in FIG. 2, the computing device 202 is used to store data from the software applications 210 in one of multiple storage locations. Of course, the storage media 208, 226, 234, and 242 could be located in other arrangements than as distributed between the computing devices 206, 228, 236. As those skilled in the art will understand upon viewing this disclosure, a manager module does not necessarily have to be located in the computing device 204, but, as illustrated in dashed lines, a manager module 244 could replace or supplement the manager module 214. Likewise, a manager module 246 illustrated in dashed lines could also replace or supplement the other manager modules 214 and 244. The media modules 222, 230, and 238 could also be supplemented with a media module 248 shown in dashed lines that would interact with an additional storage media 250, also illustrated in dashed lines. Further as illustrated in dashed lines, the computing device 204 could include a media module 252 that interacts with a storage media 254.



FIG. 3 is a block diagram of an exemplary computer system 300 for providing separate storage locations for a file of a software application and the application specific profiles of the file according to principles of the present invention. The computer system 300 is illustrated as an application 302 with a physical view storage 304. A logical view storage 306 provides an organizational scheme for accessing different documents/data in the computer system 300. For example, the application 302 could be a word processor that access the physical view storage 304 and access documents that have been stored on any one of a first disk drive 308, a second disk drive 310, etc., down to an Nth disk drive 312. The application 302 could also access information through the logical view storage 306 from any one of a variety of media devices.


The logical view storage 306 provides the organizational scheme for storage and retrieval of information that is used in the computer system 300. Storage policies 314 are used to determine where and how particular information is to be stored. An analysis engine 316 is used to analyze the particular information that is being stored or retrieved, and based upon at least the information's storage policy and a file storage history 318, the analysis engine 316 determines the current location of the information of interest, either where to store the information or where to access the information. The file storage history 318 includes information such as a file location 320 and prior file locations 322. With the assistance of the analysis engine 316, the logical view storage 306 balances information storage among media devices (Type A, B, C, D, . . . N) 324 according to multiple factors such as factors that are found in the storage policies 314 and the file storage history 318.


Factors include things such as how different users of the application 302 are treated for file storage access, i.e., one user has initial storage of documents in media s device type A while another user has initial storage of documents in media device type B. The first user may have documents migrate from media device type A to B after a week and then from B to C after a month. The second user may only have documents migrate from media device type B to C after a month. The different storage variations are as varied as the different types of users that may use the application 302.


Another factor that could influence the organizational scheme of the logical view storage 306 is the type of application 302 that is storing or retrieving the information. For example, word processing applications may have a completely different storage scheme than spreadsheet or engineering drawing applications. Different applications may also access information at different frequencies, require different access times, perform editing or only viewing, etc., all of which could influence the organizational scheme of the logical view storage 306. The different media types 324 offer, among other things, different access times to accommodate the differing types of application 302.


The application 302 operates by means of a processor 326. The processor creates an index 328 to track storage of various profiles that are created to accompany files that are accessed in the application 302. For example, if the application 302 is a word processor and a new document is created, upon storage of the new document the index 328 will be updated for ease of tracking the storage location of the profile regardless of the logical view storage 306 determination of where the new document is to be stored. In this manner, the profile may be retrieved concurrently with a request for retrieval of the new document and the application 302 is able to be set up prior to receiving the new document, thereby expediting the time spent waiting for the new document to be accessible in the application 302. Various profiles specific to versions of the new document are stored in a profile storage 330 along with profiles from other applications other versions of other documents or files. Of course, those skilled in the art and viewing the present disclosure will understand that variations exist in the tools that are used to retrieve different files with their accompanying profiles.



FIG. 4 is a block diagram of an exemplary logical view storage 400 that may be used in the computer system 300. The logical view storage 400 includes storage policies 402 and an analysis engine 404. The analysis engine 404 includes a processor 406 that determines storage and retrieval information based the storage policies 402 and certain other characteristics such as “file by file” 408, “file type by file type” 410, “user by user” 412, “app by app” 414, etc.


The storage policies 402 are used to determine where and how particular information is to be stored. The analysis engine 404 is used to analyze the particular information that is being stored or retrieved, and based upon at least the information's storage policy and a file storage history 416, the analysis engine 404 determines the current location of the information of interest, either where to store the information or where to access the information. The file storage history 416 includes information such as a file location 418 and prior file locations 420.



FIG. 5 is a block diagram of exemplary storage policies 314. The storage policies 314 include storage sequences 501 and storage logic 502. The storage sequences 501 represent potential storage patterns which may be used to store particular types of data. The storage logic 502 includes initial storage sequence selection 504, which represents potential storage considerations for the data when it arrives at the analysis engine 316. Represented in dash lines is storage sequence reselection 506 and storage sequence adaptation 508. The storage sequence reselection 506 represents logic which would allow alternative sequence selection logic to be used in place of the initial storage sequence selection 504. Although not required, a storage sequence reselection 506 would occur when the initial storage sequence selection 504 is inappropriate for the data that is being transmitted from the application 302. The storage sequence adaptation 508 represents logic that would enable the initial storage sequence selection 504 to be modified according to changes in the data that is being saved in the storage mechanisms.



FIG. 6 is a block diagram of exemplary storage sequences 501. The storage sequences 501 include a primary storage sequence 602, a secondary storage sequence 604, a duplicate storage sequence 606, and a long term storage sequence 608. It should be noted that these are exemplary storage sequences only, and numerous other storage sequences could be added to the storage sequences 501. The storage sequences 501 are arranged in rows with columns to illustrate the different storage sequence characteristics.


The far left column illustrates the storage sequence name followed by a first storage I.D. in the second column. For example, if the application 302 is directing the storage of data, the analysis engine 316 would look to the storage policies 314. A default storage policy may include storing the data to the primary storage sequence 602 where the data would enter the first storage having an I.D. of 001. The data would be stored at the first storage I.D. for 13 weeks as indicated in the next column of the storage sequences 501. At this point the data would be moved to a second storage I.D. 005 where it would be stored for a duration of 26 weeks. After 26 weeks, the data would be moved to a third storage I.D. 002 for a duration of 52 weeks. This process would continue until the data is stored in an Nth storage I.D. 004. The primary storage sequence 602, of course, is an exemplary storage sequence, but is explained here to assist in understanding operations of all the illustrated storage sequences 501.


As can be seen from FIG. 6, the other storage sequences operate in similar manners. For example, the secondary storage sequence 604 provides data with a storage track that begins at a storage having an I.D. of 005. The data is stored at storage I.D. 005 for 13 weeks as indicated in column 3 of FIG. 6 before moving to a second storage having an I.D. of 003 where the data is stored for 13 weeks. The data is then moved to a storage having I.D. 002 where it is stored for 65 weeks and then moved to storage I.D. 004. The long term storage sequence 608 begins at storage I.D. 005 for 2 weeks, moves to storage I.D. 002 for 12 weeks and then to storage I.D. 004 for permanent storage.


Of particular note is the duplicate storage sequence 606. In the duplicate storage sequence 606, data is received at the analysis engine 316 where it is determined that the data should be copied to two separate storage locations, which are represented in the first storage I.D. column as 001 and 005. The 001 storage I.D. has been directed to store the data for 13 weeks, and then the data may be deleted. The data in the storage having I.D. 005 is directed to be stored for 39 weeks where it will then be moved to a second storage I.D. of 002 for a duration of 46 weeks, after which it will be moved to the nth storage I.D. 004.



FIG. 7 is a block diagram of the initial storage sequence selection 504. The initial storage sequence selection 504 is comprised of a number of elements that may be used to determine which of the storage sequences 501 that will be used to store the current data. A default initial storage sequence selection is selected for the computer system 300, and the default is comprised of a particular arrangement of factors such as a user directed override 702, a user profile 704, an application 706, a file type 708, a user network location 710, an available storage space 712, . . . . The user directed override 702 represents the situation where a user chooses to implement a particular storage sequence rather than the default storage sequence that would be used if the default storage policies were used. The user profile 704 represents logic that would decide which storage sequence to use based on the type of user, e.g., if the user is a manager, a certain storage sequence would be used, whereas a secretary may require a modified storage sequence. The application 706 that the data is generated from could also play a factor in selecting which storage sequence to use, e.g., if the data was generated from a word processing application, one storage sequence could be selected, whereas if a video application generated the data, a different storage sequence could be selected. The file type 708 is commonly the most important factor in determining which storage sequence to use for the data that is received at the analysis engine 316. The user network location 710 could play a factor in which storage sequence to use, e.g., if the user is located near a particular storage device, one storage sequence may be desired over another storage sequence. The available storage space 712 could affect where data is to be stored when the default storage sequence requires that a decision be made concerning whether data is stored in a storage space that is reaching capacity or in another storage space where extra space is available.



FIG. 8 is a block diagram of the storage sequence reselection 506. The storage sequence reselection 506 represents the factors that would be pertinent to selecting a new storage sequence for storage of data in the computer system 300. For example, if specific file usage history 802 shows that the data should be stored in a different storage sequence, the storage sequence reselection 506 allows the new selection of a storage sequence. The file type usage history 804, e.g., the access history of word documents, is another factor which may require a new storage sequence to be used in the computer system 300.


Changes in user profile 806 are another reason for changing the storage sequences of the default system. Another factor for changing the default storage sequences is user network relocation 808. Still other factors include the available storage space 810 and added storage media 812. Of course, these are only exemplary factors and additional factors could be added to the storage sequence reselection 506.



FIG. 9 is a block diagram of the storage sequence adaptation 508. Like the storage sequence reselection 506, the storage sequence adaptation 508 is illustrated having exemplary reasons for adapting the storage sequences that are used in the analysis engine 316. A specific file usage history 902 could be a reason for changing a storage sequence, such as the primary storage sequence 602 having a greater duration for the first storage I.D. Changes in user profile 904 can also be a reason to adapt the storage sequences. Other factors for changing the storage sequences include user network relocation 906, available storage space 908, and added storage media 910.



FIG. 10 illustrates an exemplary embodiment of a data and storage management system 1000. The data and storage management system 1000 includes computing devices 1002, 1004, 1006, and 1008 which interact across a network 1010, such as an Ethernet network. A computing device 1012 is also available to interact with the computing devices 1002-1008. The computing device 1012 includes a media module 1014 that includes the capacity to store and retrieve application profiles to the data and storage management system 1000 as described in further detail below.


When the data and storage management system 1000 is in operation, a software application 1016 on the computing device 1002 is used to interact with a word processing document, an engineering graphics file, or similar file (herein referred to as a “file”) depending on the type of the software application 1016. Installed file system/interface module 1018 interacts with a profile storage 1020 of the computing device 1002. As will be understood by those of ordinary skill in the art and viewing the present disclosure, the profile storage 1020 could be located on the computing device 1004, 1012, or other computing device to realize various aspects of the present invention.


The computing device 1004 includes a retrieval manager 1021 with a master storage and backup map 1022 that directs requests for a file to one of the computing devices 1006 and 1008. At the computing devices 1006 and 1008, respective media modules 1024 and 1026 exist to help the retrieval request know where the desired file with its accompanying profile (herein referred to as the “information”) is located. For further assistance in locating the desired information, the media module 1024 and 1026 include respective data indexes 1028 and 1030. In this manner, the software application 1016 is able to request information and the file of the information is retrieved from one of the storage media, i.e., magnetic disk media 1032, optical media 1034, or magnetic tape media 1036. Due to the storage and retrieval organization, the accompanying profile of is the file in the requested information is retrieved from its location concurrently and typically faster than the retrieval of the file itself.


Of course, the storage media illustrated in FIG. 10 is exemplary storage media and additional storage media could be used while the data management scheme is continually tracked by the media modules 1024 and 1026 of the data and storage management system 1000. The media module 1014 may also include a data index 1038 that provides access to other storage 1040 for a requested file while the accompanying profile is located elsewhere such as the profile storage 1020.



FIG. 11 illustrates an exemplary embodiment of a data and storage management system 1100. The data and storage management system 1100 includes computing devices 1102, 1104, and 1106 which communicate across a network 1108, such as an Ethernet network. A software application 1110 is illustrated in the computing device 1102 and may request to view a file such as a word processing document, graphics program document, or other type of file with its accompanying profile through an installed file system 1112. Similarly, a software application 1114 operates on the computing device 1104 and interacts with an installed file system 1116. The computing devices 1102 and 1104 commonly interact with the computing device 1106 across the network 1108 where a manager module 1118 is accessed and a master map 1120 is available to retrieve more detailed information on the location of messages in the data and storage management system 1100. If the software application 1110 has requested a file, the installed file system 1112 may interact with a network attached storage 1122 where a media module 1124 interacts with storage media 1126 to retrieve the desired file that was requested by the software application 1110. A profile storage 1127 in the computing device 1102 contains profiles of the files that are stored and when the file is retrieved from the storage media 1126, its corresponding profile may be retrieved from the profile storage 1127.


Alternatively, the installed file system 1112 may interact with a storage area network 1128 across a network 1130, the network 1130 commonly being a high speed fibre network. The storage area network 1128 makes accessing storage media such as magnetic disk media 1132, optical media 1134, and magnetic tape media 1136 available without significant processing in the computing device 1102. To find the exact location of a file, a media module 1138 (shown in dashed lines to represent the optional nature of its location within the storage area network 1128) may be used to locate the file. In addition, a media module 1140 shown in dashed lines may be available to find the exact location of a file. Also shown in dashed lines is an extension of the network 1130 where the network attached storage 1122 may include a high speed connection with the computing devices 1102, 1104, and 1106. Finally, the storage area network 1128 may communicate directly with the network 1108 as indicated by dashed lines 1142.


Because the above detailed description is exemplary, when “one embodiment” is described, it is an exemplary embodiment. Accordingly, the use of the word “one” in this context is not intended to indicate that one and only one embodiment may have a described feature. Rather, many other embodiments may, and often do, have the described feature of the exemplary “one embodiment.” As used above, when the invention is described in the context of one embodiment, that one embodiment is one of many possible embodiments of the invention.


Notwithstanding the above caveat regarding the use of the words “one embodiment” in the detailed description, it will be understood by those within the art that if a specific number of an introduced claim element is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such limitation is present or intended. For example, in the claims below, when a claim element is described as having “one” feature, it is intended that that element be limited to one and only one of the feature described. Furthermore, when a claim element is described in the claims below as including or comprising “a” feature, it is not intended that the element be limited to one and only one of the feature described. Rather, for example, the claim including “a” feature reads upon an apparatus or method including one or more of the feature in question. That is, because the apparatus or method in question includes a feature, the claim reads on the apparatus or method regardless of whether the apparatus or method includes another such similar feature. This use of the word “a” as a nonlimiting, introductory article to a feature of a claim is adopted herein as being identical to the interpretation adopted by many courts in the past, notwithstanding any anomalous or precedential case law to the contrary that may be found. Similarly, when a claim element is described in the claims below as including or comprising an aforementioned feature (e.g., “the” feature), it is intended that that element not be limited to one and only one of the feature described. Furthermore, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles.


While particular embodiments of the present invention have been shown and described, based upon the teachings herein, various modifications, alternative constructions, and equivalents may be used without departing from the invention claimed herein. Consequently, the appended claims encompass within their scope all such changes, modifications, etc. as are within the true spirit and scope of the invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims. The above description is not intended to present an exhaustive list of embodiments of the invention. Unless expressly stated otherwise, each example presented herein is a nonlimiting or nonexclusive example, whether or not the terms nonlimiting, nonexclusive or similar terms are contemporaneously expressed with each example. Although an attempt has been made to outline some exemplary embodiments and exemplary variations thereto, other embodiments and/or variations are within the scope of the invention as defined in the claims below.


The above-listed sections and included information are not exhaustive and are only exemplary for an application specific rollback system according to principles of the present invention. The particular sections and included information in a particular embodiment may depend upon the particular implementation and the included devices and resources. Although a system and method according to the present invention has been described in connection with the preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. An apparatus, comprising: at least one storage management module, wherein the at least one storage management module is configured to manage storage of application specific profiles and is configured to manage storage of corresponding files among multiple storage media,wherein the at least one storage management module distributes the application specific profiles to storage locations of the application specific profiles, andwherein the storage locations of the application specific profiles are separate from storage locations of the corresponding files; anda processor for operating a software application; wherein the software application provides for storage and retrieval of the file and the corresponding application specific profile from the separate storage locations,wherein the corresponding application specific profile is used by the software application for at least a purpose of preparing the software application to display the file upon its retrieval by the software application,wherein the application specific profiles are generated by the software application during operation of the software application, andwherein each application specific profile includes user-specific settings used by the software application during editing of each file that corresponds to an application specific profile.
  • 2. The apparatus of claim 1 wherein at least one of the multiple storage media is located locally.
  • 3. The apparatus of claim 1 wherein the at least one storage management module distributes stored files and corresponding profiles among the multiple storage media according to predetermined patterns, and wherein at least one of the predetermined patterns enables retrieval of the file's corresponding application specific profile before retrieval of the file by the software application.
  • 4. The apparatus of claim 1 wherein the at least one storage management module provides concurrent access of the application specific profile and the file.
  • 5. The apparatus of claim 1 wherein the application specific profile is retrieved prior to the file and sets up the software application in preparation for receipt of the file.
  • 6. The apparatus of claim 1, wherein the at least one storage management module is configured to manage storage of application specific profiles and is configured to manage storage of corresponding files among multiple storage media by applying life cycle management policies to each of the application specific profiles and the corresponding files based on the type of application associated with the application specific profiles and the corresponding files.
  • 7. A non-transitory computer readable medium storing instructions for a method for data storage and retrieval in a computer system, the method comprising: receiving an application specific profile corresponding to a version of a file to be saved,storing the file at a first location in the computer system;storing the application specific profile at a second location in the computer system, wherein the second location is different from the first location;receiving a request for the retrieval of the file such that retrieval of the file and the application specific profile is as though the file and its application specific profile were located in a single location;providing the requested file; andproviding the application specific profile before display of the file, wherein the application specific profile is generated by a software application during operation of the software application, andwherein the application specific profile includes user-specific settings used by the software application during editing of the file that corresponds to the application specific profile.
  • 8. The non-transitory computer readable medium of claim 7 wherein the software application is one of a word processor, an engineering graphics program, a standard graphics program, a database, and a web browser.
  • 9. The non-transitory computer readable medium of claim 7 wherein a storage management module distributes different files and file versions in a first set of storage media and stores different application specific profiles for each of the files and versions of the files in a second set of storage media.
  • 10. The non-transitory computer readable medium of claim 7 wherein the application specific profile is used by the software application for at least the purpose of preparing the software application to display the file upon its retrieval by the software application, wherein a new profile is created at least each time the file is saved.
  • 11. The non-transitory computer readable medium of claim 7, further comprising: sending the file, with the software application, to a storage management module that manages storage of the file and storage of the application specific profile.
  • 12. A system, comprising: means for receiving an application specific profile corresponding to a version of a file to be saved,means for storing the file at a first location in the computer system;means for storing the application specific profile at a second location in the computer system, wherein the second location is different from the first location;means for receiving a request for the retrieval of the file such that retrieval of the file and the application specific profile is as though the file and its application specific profile were located in a single location;means for providing the requested file; andmeans for providing the application specific profile before display of the file, wherein the application specific profiles are generated by the software application during operation of the software application, andwherein each application specific profile includes user-specific settings used by the software application during editing of each file that corresponds to an application specific profile.
  • 13. The system of claim 12 wherein the software application is one of a word processor, an engineering graphics program, a standard graphics program, a database, and a web browser.
  • 14. The system of claim 12 wherein a different profile is stored with the storage of each version of the file as the file is created.
  • 15. The system of claim 12 further comprising storage management module means for distributing different files and file versions in a first set of storage media and for storing different application specific profiles for each of the files and versions of the files in a second set of storage media.
  • 16. The system of claim 12 wherein the application specific profile is used by the software application for at least the purpose of preparing the software application to display the file upon its retrieval by the software application, wherein a new profile is created at least each time the file is saved.
  • 17. The system of claim 12, further comprising: means for sending the file, with the software application, to a storage management module that manages storage of the file and storage of the application specific profile.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 12/200,666, entitled “Storage of Application Specific Profiles Correlating to Document Versions,” filed Aug. 28, 2008, now U.S. Pat. No. 7,937,702,which is a continuation of U.S. patent application Ser. No. 09/882,438, entitled “Storage of Application Specific Profiles Correlating to Document Versions,” filed Jun. 14, 2001, now U.S. Pat. No. 7,434,219, which is a continuation-in-part of U.S. patent application Ser. No. 09/774,272, entitled “Email Attachment Management In A Computer System,” filed Jan. 30, 2001, now U.S. Pat. No. 7,155,481, which claims the benefit of U.S. Provisional Application Ser. No. 60/179,343, entitled “Logical View With Granular Access to Exchange Data Managed by Modular Data and Storage Management Systems,” filed Jan. 31, 2000, all of which are incorporated by reference herein in their entireties.

US Referenced Citations (274)
Number Name Date Kind
4464122 Fuller et al. Aug 1984 A
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5212784 Sparks May 1993 A
5226157 Nakano et al. Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5386545 Gombos, Jr. et al. Jan 1995 A
5410700 Fecteau et al. Apr 1995 A
5448718 Cohn et al. Sep 1995 A
5448724 Hayashi Sep 1995 A
5485606 Midgdey et al. Jan 1996 A
5491810 Allen Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5504873 Martin et al. Apr 1996 A
5517405 McAndrew et al. May 1996 A
5537568 Yanai et al. Jul 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5555371 Duyanovich et al. Sep 1996 A
5559957 Balk Sep 1996 A
5564037 Lam Oct 1996 A
5608865 Midgely et al. Mar 1997 A
5613134 Lucus et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5634052 Morris May 1997 A
5638509 Dunphy et al. Jun 1997 A
5659614 Bailey, III Aug 1997 A
5666501 Jones et al. Sep 1997 A
5673381 Huai et al. Sep 1997 A
5673382 Cannon et al. Sep 1997 A
5699361 Ding et al. Dec 1997 A
5729743 Squibb Mar 1998 A
5740405 DeGraaf Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5758649 Iwashita et al. Jun 1998 A
5761677 Senator et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5778165 Saxon Jul 1998 A
5778395 Whiting et al. Jul 1998 A
5812398 Nielsen Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5860073 Ferrel et al. Jan 1999 A
5864846 Voorhees et al. Jan 1999 A
5875478 Blumenau Feb 1999 A
5887134 Ebrahim Mar 1999 A
5896531 Curtis et al. Apr 1999 A
5901327 Ofek May 1999 A
5924102 Perks Jul 1999 A
5950205 Aviani, Jr. Sep 1999 A
5974563 Beeler, Jr. Oct 1999 A
5983239 Cannon Nov 1999 A
5991753 Wilde Nov 1999 A
6012053 Pant et al. Jan 2000 A
6021415 Cannon et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6052735 Ulrich et al. Apr 2000 A
6064821 Shough et al. May 2000 A
6073128 Pongracz et al. Jun 2000 A
6076148 Kedem Jun 2000 A
6091518 Anabuki et al. Jul 2000 A
6094416 Ying Jul 2000 A
6131095 Low et al. Oct 2000 A
6131190 Sidwell Oct 2000 A
6148412 Cannon et al. Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6161111 Mutalik et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6182198 Hubis et al. Jan 2001 B1
6212512 Barney et al. Apr 2001 B1
6226759 Miller et al. May 2001 B1
6239800 Mayhew et al. May 2001 B1
6253217 Dourish et al. Jun 2001 B1
6260069 Anglin Jul 2001 B1
6266679 Szalwinski et al. Jul 2001 B1
6266784 Hsiao et al. Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6298439 Beglin Oct 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6327590 Chidlovskii et al. Dec 2001 B1
6327612 Watanabe et al. Dec 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330642 Carteau Dec 2001 B1
6341287 Sziklai Jan 2002 B1
6343287 Kumar et al. Jan 2002 B1
6343324 Hubis et al. Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6356801 Goodman et al. Mar 2002 B1
6363462 Bergsten Mar 2002 B1
6367073 Elledge Apr 2002 B2
6374363 Wu et al. Apr 2002 B1
6389432 Pothapragada et al. May 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6442706 Wahl et al. Aug 2002 B1
6470332 Weschler Oct 2002 B1
6484162 Edlund et al. Nov 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6502205 Yanai et al. Dec 2002 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6540623 Jackson Apr 2003 B2
6549918 Probert, Jr. et al. Apr 2003 B1
6557039 Leong et al. Apr 2003 B1
6564228 O'Connor May 2003 B1
6593656 Ahn et al. Jul 2003 B2
6618771 Leja et al. Sep 2003 B1
6629110 Cane et al. Sep 2003 B2
6647399 Zaremba Nov 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6675177 Webb Jan 2004 B1
6691232 Wood et al. Feb 2004 B1
6721767 De Meno et al. Apr 2004 B2
6732088 Glance May 2004 B1
6732231 Don et al. May 2004 B1
6732244 Ashton et al. May 2004 B2
6745178 Emens et al. Jun 2004 B1
6795828 Ricketts Sep 2004 B2
6816941 Carlson et al. Nov 2004 B1
6820070 Goldman et al. Nov 2004 B2
6839741 Tsai Jan 2005 B1
6839803 Loh et al. Jan 2005 B1
6850994 Gabryjelski Feb 2005 B2
6860422 Hull et al. Mar 2005 B2
6865568 Chau Mar 2005 B2
6871182 Winnard et al. Mar 2005 B1
6892221 Ricart et al. May 2005 B2
6948038 Berkowitz et al. Sep 2005 B2
6957186 Guheen et al. Oct 2005 B1
6970997 Shibayama et al. Nov 2005 B2
6976039 Chefalas et al. Dec 2005 B2
6995675 Curkendall et al. Feb 2006 B2
6996616 Leighton et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7028079 Mastrianni et al. Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039860 Gautestad May 2006 B1
7058661 Ciaramitaro et al. Jun 2006 B2
7099901 Sutoh et al. Aug 2006 B2
7107298 Prahlad et al. Sep 2006 B2
7107416 Stuart et al. Sep 2006 B2
7133870 Tripp et al. Nov 2006 B1
7139826 Watanabe et al. Nov 2006 B2
7146387 Russo et al. Dec 2006 B1
7155421 Haldar Dec 2006 B1
7155481 Prahlad et al. Dec 2006 B2
7159081 Suzuki Jan 2007 B2
7171468 Yeung et al. Jan 2007 B2
7171585 Gail et al. Jan 2007 B2
7188141 Novaes Mar 2007 B2
7240100 Wein et al. Jul 2007 B1
7246207 Kottomtharayil et al. Jul 2007 B2
7269664 Hutsch et al. Sep 2007 B2
7284033 Jhanji Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7290017 Wang et al. Oct 2007 B1
7313659 Suzuki Dec 2007 B2
7328325 Solis et al. Feb 2008 B1
7346623 Prahlad et al. Mar 2008 B2
7346676 Swildens et al. Mar 2008 B1
7346751 Prahlad et al. Mar 2008 B2
7376947 Evers May 2008 B2
7379978 Anderson et al. May 2008 B2
7386535 Kalucha et al. Jun 2008 B1
7395282 Crescenti et al. Jul 2008 B1
7424543 Rice, III Sep 2008 B2
7434219 De Meno et al. Oct 2008 B2
7457790 Kochunni et al. Nov 2008 B2
7472142 Prahlad et al. Dec 2008 B2
7496841 Hadfield et al. Feb 2009 B2
7565484 Ghosal et al. Jul 2009 B2
7577689 Masinter et al. Aug 2009 B1
7577694 Nakano et al. Aug 2009 B2
7584469 Mitekura et al. Sep 2009 B2
7587715 Barrett et al. Sep 2009 B1
7593935 Sullivan Sep 2009 B2
7596713 Mani-Meitav et al. Sep 2009 B2
7603626 Williams et al. Oct 2009 B2
7606844 Kottomtharayil Oct 2009 B2
7610285 Zoellner et al. Oct 2009 B1
7668884 Prahlad et al. Feb 2010 B2
7673175 Mora et al. Mar 2010 B2
7676542 Moser et al. Mar 2010 B2
7689899 Leymaster et al. Mar 2010 B2
7730031 Forster Jun 2010 B2
7734593 Prahlad et al. Jun 2010 B2
7734669 Kottomtharayil et al. Jun 2010 B2
7751628 Reisman Jul 2010 B1
7792789 Prahlad et al. Sep 2010 B2
7801871 Gosnell Sep 2010 B2
7814118 Kottomtharayil et al. Oct 2010 B2
7827266 Gupta Nov 2010 B2
7831793 Chakravarty et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7844676 Prahlad et al. Nov 2010 B2
7865517 Prahlad et al. Jan 2011 B2
7882077 Gokhale et al. Feb 2011 B2
7882093 Kottomtharayil et al. Feb 2011 B2
7937393 Prahlad et al. May 2011 B2
7937420 Tabellion et al. May 2011 B2
7937702 De Meno et al. May 2011 B2
7984063 Kottomtharayil et al. Jul 2011 B2
8037028 Prahlad et al. Oct 2011 B2
8055627 Prahlad et al. Nov 2011 B2
8060514 Arrouye et al. Nov 2011 B2
20020032878 Karpf Mar 2002 A1
20020049883 Schneider et al. Apr 2002 A1
20020120858 Porter et al. Aug 2002 A1
20030046313 Leung et al. Mar 2003 A1
20030050979 Takahashi Mar 2003 A1
20030101086 San Miguel May 2003 A1
20040039689 Penney et al. Feb 2004 A1
20040267815 De Mes Dec 2004 A1
20050039069 Prahlad et al. Feb 2005 A1
20050097070 Enis et al. May 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050278207 Ronnewinkel Dec 2005 A1
20060036619 Fuerst et al. Feb 2006 A1
20060070061 Cox et al. Mar 2006 A1
20060115802 Reynolds Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060149604 Miller Jul 2006 A1
20060149724 Ritter et al. Jul 2006 A1
20060224846 Amarendran et al. Oct 2006 A1
20060282900 Johnson et al. Dec 2006 A1
20070022145 Kavuri Jan 2007 A1
20070028229 Knatcher Feb 2007 A1
20070043715 Kaushik et al. Feb 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061298 Wilson et al. Mar 2007 A1
20070166674 Kochunni et al. Jul 2007 A1
20070250810 Tittizer et al. Oct 2007 A1
20070296258 Calvert et al. Dec 2007 A1
20080229037 Bunte et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080282048 Miura Nov 2008 A1
20080288947 Gokhale et al. Nov 2008 A1
20080288948 Attarde et al. Nov 2008 A1
20080320319 Muller et al. Dec 2008 A1
20090171883 Kochunni et al. Jul 2009 A1
20090177719 Kavuri Jul 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20090320029 Kottomtharayil Dec 2009 A1
20090320033 Gokhale et al. Dec 2009 A1
20090320037 Gokhale et al. Dec 2009 A1
20100031017 Gokhale et al. Feb 2010 A1
20100070466 Prahlad et al. Mar 2010 A1
20100070474 Lad Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100070726 Ngo et al. Mar 2010 A1
20100076932 Lad Mar 2010 A1
20100114837 Prahlad et al. May 2010 A1
20110093471 Brockway et al. Apr 2011 A1
20110173207 Kottomtharayil et al. Jul 2011 A1
Foreign Referenced Citations (22)
Number Date Country
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0899662 Mar 1999 EP
0910019 Apr 1999 EP
0981090 Feb 2000 EP
0986011 Mar 2000 EP
1035690 Sep 2000 EP
2216368 Oct 1989 GB
07-046271 Feb 1995 JP
7073080 Mar 1995 JP
8044598 Feb 1996 JP
2000035969 Feb 2000 JP
2003531435 Oct 2003 JP
WO-9513580 May 1995 WO
WO-9912098 Mar 1999 WO
WO-0058865 Oct 2000 WO
WO-0106368 Jan 2001 WO
WO-0116693 Mar 2001 WO
WO-0180005 Oct 2001 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 13/538,290, filed Jun. 29, 2012, Kottomtharayil.
Pitoura et al., “Locating Objects in Mobile Computing”, IEEE Transactions on Knowledge amd Data Engineering, vol. 13, No. 4, Jul./Aug. 2001, pp. 571-592.
Rowe et al., “Indexes for User Access to Large Video Databases”, Storage and Retrieval for Image and Video Databases II, IS,& T/SPIE Symp. On Elec. Imaging Sci. & Tech., Feb. 1994, pp. 1-12.
U.S. Appl. No. 13/343,034, filed Jan. 4, 2012, Prahlad.
Hennessy et al., “Computer Architecture—A Quantitative Approach”, 2nd Edition, 1996, pp. 246-250.
U.S. Appl. No. 09/609,977.
U.S. Appl. No. 13/076,792, filed Mar. 21, 2011, Kumarasamy.
U.S. Appl. No. 13/250,349, filed Sep. 30, 2011, Prahlad.
Armstead et al., “Implementation of a Campus-wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199.
Arneson, “Mass Storage Archiving in Network Environments,” Digest of Papers, Ninth IEEE Symposium on Mass Storage Systems, Oct. 31, 1988-Nov. 3, 1988, pp. 45-50, Monterey, CA.
Cabrera et al, “ADSM: A Multi-Platform, Scalable, Backup and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126.
Jander, M., “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4 (Mar. 21, 1998), pp. 64-72.
Jason Gait, “The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988) (see in particular figure 5 in p. 15 and recitation in claim 5).
Microsoft Press Computer Dictionary Third Edition, “Data Compression,” Microsoft Press, 1997, p. 130.
Rosenblum et al., “The Design and Implementation of a Log-Structured File System,” Operating Systems Review S Those documents which are marked with a double asterisk (**) next to the Cite No. in the attached form PTO/SB/08 are not supplied because they were previously cited by or submitted to the Office in prior U.S. Appl. No. 09/991,900, filed Nov. 23, 2001 and relied upon in this application for an earlier filing date under 35 U.S.C. 120. IGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
Veeravalli, B., “Network Caching Strategies for a Shared Data Distribution for a Predefined Service Demand Sequence,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, No. 6, Nov./Dec. 2003, pp. 1487-1497.
Related Publications (1)
Number Date Country
20110173171 A1 Jul 2011 US
Provisional Applications (1)
Number Date Country
60179343 Jan 2000 US
Continuations (2)
Number Date Country
Parent 12200666 Aug 2008 US
Child 13073604 US
Parent 09882438 Jun 2001 US
Child 12200666 US
Continuation in Parts (1)
Number Date Country
Parent 09774272 Jan 2001 US
Child 09882438 US