Electronic devices, such as notebook computers, tablet computers, and smartphones are increasingly used in various ways. It is becoming increasingly prevalent to view such devices as a means to an end by providing functionality rather than merely hardware. Traditional ownership of such devices is giving way to more flexible use cases.
A device-as-a-service (DaaS) ecosystem provides electronic devices to users. A particular device may be used by a particular user for a given amount of time. The device may be returned by the user, who may then be assigned a new device. A device may be stored when the user is not using the device. A storage apparatus may be used to physically secure devices that are not in possession of users. A storage apparatus may provide network connectivity to the device, so as to maintain its software, as well as power connectivity, which may be useful in charging a battery of the device. An organization, such as a company, may have multiple storage apparatuses on its premises, so that users (e.g., employees, customers, visitors, etc.) may take and return devices according to the goals of the organization.
A storage apparatus may include a plurality of storage receptacles to store a plurality of electronic devices in a way that addresses a risk of fire. Such a fire may result from a damaged or defective battery contained by a device or from a short circuit in the device or in the wiring of a storage receptacle. For example, devices containing lithium ion batteries may cause unexpected and serious fires.
The storage apparatus may prevent a fire from spreading from one storage receptacle to another or to outside the storage apparatus. The storage receptacle in which a fire originated may be taken out of service and other storage receptacles may continue to be used. A fire suppression mechanism may be provided to suppress a fire in a storage receptacle. The storage receptacle may be locked and access to other receptacles may still be granted in the meantime. The cabinet may include fire-resistant material to inhibit the spread of fire among storage receptacles. A sensor may be provided to a storage receptacle to trigger the fire suppression mechanism or issue a notification about the fire to a remote administrator of the storage apparatus.
The apparatus 100 includes a cabinet body 102, a first storage receptacle 104, a second storage receptacle 106, and a fire suppression mechanism 108. The number of storage receptacles provided is not particularly limited, and various example implementations may have from five to 40 storage receptacles, for instance. More or fewer are possible.
The cabinet body 102 may include a housing made of metal or other fire-resistant material. For example, the cabinet body 102 may include metal walls with added fire-resistant material (e.g., fiberglass, mineral wool, etc.). In some examples, an external wall of the cabinet body 102 may include two metal panels that sandwich compressed mineral wool. The cabinet body 102 may further include support structure, such as legs to support the apparatus on the floor, fastener points to secure the apparatus 100 to a wall, or similar.
The first storage receptacle 104 is defined at the cabinet body 102 to temporarily store an electronic device. For example, the first storage receptacle 104 may include an internal volume within the cabinet body 102 and an access door 110 that may be opened to access the internal volume. The internal volume may be shaped and sized to receive an electronic device. The access door 110 may be lockable and may be automatically lockable in response to detection of a sign of fire.
The second storage receptacle 106 may be similar or identical to the first storage receptacle 104. The second storage receptacle 106 and the first storage receptacle 104 are separated to prevent physical access to the first storage receptacle 104 through the second storage receptacle 106, and vice versa. That is, an electronic device stored in one of the storage receptacles 104, 106 cannot be removed via the other storage receptacle 104, 106.
In this example, a barrier 112, such as a divider wall, is positioned between the first storage receptacle 104 and the second storage receptacle 106. The barrier 112 may include fire-resistant material. For example, the barrier 112 may include a metal wall with added fire-resistant material (e.g., fiberglass, mineral wool, etc.). In some examples, the barrier 112 may include two metal panels that sandwich compressed mineral wool. The barrier 112 may prevent the spread of fire, heat, or smoke.
The fire suppression mechanism 108 independently suppresses a fire in the first storage receptacle 104 or a fire in the second storage receptacle 106. That is, fire suppression may be delivered to the particular storage receptacle 104, 106 undergoing a fire and may be withheld from the other storage receptacle 104, 106. Such a fire may be caused by a malfunctioning battery of an electronic device stored within a storage receptacle 104, 106, a short circuit in wiring running to a storage receptacle 104, 106, or similar. The fire suppression mechanism 108 is provided to suppress a fire in an affected storage receptacle 104, 106 and reduce or prevent the spread of fire to another storage receptacle 104, 106 or to outside the cabinet body 102.
The fire suppression mechanism 108 may include a first fire suppression device 114 at the first storage receptacle 104 and a second fire suppression device 116 at the second storage receptacle 106. The first fire suppression device 114 may include a sensor-activated charge of fire suppression/extinguishing material, such as carbon dioxide, sodium carbonate, dry chemical powder (type ABC, type B, etc.), foam, halon gas, or other material suitable for the type of fire expected.
The second fire suppression device 116 may be similar or identical to the first fire suppression device 114. The second fire suppression device 116 and the first fire suppression device 114 may be independently operable, such that triggering of one fire suppression device 114, 116 does not necessarily result in the triggering of the other fire suppression device 114, 116. As such, potential damage to an electronic device stored in a storage receptacle 104, 106 unaffected by fire may be avoided when a fire suppression device 114, 116 in another storage receptacle 104, 106 is activated. Further, independent operation may reduce an amount of suppression/extinguishing material that needs to be recharged after a fire. Moreover, it may be the case that a storage receptacle 104, 106 unaffected by fire may continue to be used after extinguishment of a fire in an affected storage receptacle 104, 106 and before the affected storage receptacle 104, 106 is returned to service.
The apparatus 200 includes an array of storage receptacles 104 separated by fire-resistant barriers 202. The array of storage receptacles 104 may be contained by or may form a cabinet body 212. The array may be rectangular, as depicted, or have another geometry.
A storage receptacle 104 may include a lockable access door 204 that may be locked closed by a locking mechanism 206. In the figure, one storage receptacle 104 is depicted with its lockable access door 204 open, while other storage receptacles 104 are depicted with their lockable access doors 204 closed.
The storage receptacle 104 includes a fire suppression device 114. The fire suppression device 114 may include a sensor 208 and a container 210 to store a charge of fire suppression/extinguishing material. The sensor 208 may include a heat sensor, a fire sensor, a smoke sensor, or similar sensor to detect a sign of fire. The sensor 208 may trigger the container 210 to release fire suppression/extinguishing material into the storage receptacle 104, so as to suppress or extinguish a fire therein.
The locking mechanism 206 of the storage receptacle 104 may include an electromagnetic mechanism that may be controlled based on a signal from the sensor 208. The storage receptacle 104 may be automatically locked closed when the sensor 208 detects a sign of fire within the storage receptacle 104. As such, a storage receptacle 104 that may contain a fire or harmful products of combustion may be locked closed until human intervention is possible. In other examples, as an added precaution, a group of storage receptacles 104 may be automatically locked closed when a sign of fire is detected in a particular storage receptacle 104. In still other examples, the entire array of storage receptacles 104 may be automatically locked closed when a sign of fire is detected.
The apparatus 300 includes an array of storage receptacles, including a first storage receptacle 302 and a second storage receptacle 304. The storage receptacles 302, 304 may be similar or identical to the other storage receptacles described herein.
The apparatus 300 further includes a fire suppression mechanism 306 that may include a container 308 to store a charge of fire suppression/extinguishing material, a first fire suppression device 310 at the first storage receptacle 302, and a second fire suppression device 312 at the second storage receptacle 304. The container 308 may provide a common source of fire suppression/extinguishing material to a plurality of storage receptacles 302, 304.
The first fire suppression device 310 may include a first nozzle 314 to expel fire suppression/extinguishing material into the first storage receptacle 302 and a first conduit 316 that communicates fire suppression/extinguishing material from the container 308 to the first nozzle 314. The first fire suppression device 310 may further include a first sensor 318 connected to the first nozzle 314. The first sensor 318 may trigger a valve or similar mechanism of the first nozzle 314 to expel fire suppression/extinguishing material in response to detection of fire, heat, smoke, or other sign of fire within the first storage receptacle 302.
Similarly, the second fire suppression device 312 may include a second nozzle 320 to expel fire suppression/extinguishing material into the second storage receptacle 304 and a second conduit 322 that communicates fire suppression/extinguishing material from the container 308 to the second nozzle 320. The second fire suppression device 312 may further include a second sensor 324 connected to the second nozzle 320 to trigger a valve or similar mechanism of the second nozzle 320 to expel fire suppression/extinguishing material in response to detection of fire, heat, smoke, or other sign of fire within the second storage receptacle 304.
The container 308 that stores a charge of fire suppression/extinguishing material may be common to the first and second fire suppression devices 310, 312, while allowing for independent triggering and operation of the first and second fire suppression devices 310, 312.
The apparatus 400 includes an array of storage receptacles including a first storage receptacle 402 and a second storage receptacle 404. The storage receptacles 402, 404 may be similar or identical to the other storage receptacles described herein. The storage receptacles 402, 404 may be separated by a barrier 406, such as a solid wall, that may include fire-resistant material. The barrier 406 may prevent physical access between the storage receptacles 402, 404 and may further prevent the spread of fire, heat, or smoke. The barrier 406 may block the communication of fire suppression/extinguishing material between storage receptacles 402, 404. The barrier 406 may be similar or identical to the other barriers described herein.
The apparatus 400 further includes a fire suppression mechanism 408 that may be similar or identical to the other fire suppression mechanisms described herein. The fire suppression mechanism 408 may include a first fire suppression device 410 at the first storage receptacle 402 and a second fire suppression device 412 at the second storage receptacle 404. The fire suppression devices 410, 412 may be similar or identical to the other fire suppression devices described herein.
The apparatus 400 further includes an additional storage receptacle 414 in physical communication with the first storage receptacle 402. Such physical communication may prevent physical access to an electronic device stored in the first storage receptacle 402 through the additional storage receptacle 414, and vice versa. For example, a divider 416 may physically separate the storage receptacles 402, 414, while allowing air communication therebetween. The divider 416 may include mesh, expanded metal, cage, or similar structure having openings that prevent the passage of an electronic device but allow the communication of fire suppression/extinguishing material. Due to such communication, the additional storage receptacle 414 may receive fire suppression from the fire suppression mechanism 408 simultaneously with the first storage receptacle 402 via the same first fire suppression device 410.
The above may also apply to another group of storage receptacles including the second storage receptacle 404 and a communicating storage receptacle 418.
A group of access-separated storage receptacles 402, 414 may be in communication for fire suppression purposes, so as to reduce a number of fire suppression devices provided. For example, the fire suppression device 410 may detect and suppress a fire, irrespective of whether such fire originated in the first storage receptacle 402 or a communicating storage receptacle 414.
The array of storage receptacles may be grouped for fire suppression in rows (as depicted), columns, pairs, triplets, or similar grouping. Fire suppression may be provided independently to different groups. In another example, all storage receptacles of an apparatus are grouped, such that fire suppression is performed collectively while physical access is provided independently. Grouping storage receptacles for fire suppression may allow for optimization of implementation complexity with respect to risk and potential damage due to fire. That is, several electronic devices may be exposed to risk together to reduce complexity that would otherwise be implemented by isolating such risk.
Grouping may be made based on an available amount of fire suppression/extinguishing material at the apparatus 400. For example, a total volume of a group of storage receptacles may be selected to match a particular quantity of fire suppression/extinguishing material, such as a total volume of fire suppression/extinguishing material provided to the apparatus 400. This may allow for efficient provision of fire suppression/extinguishing material.
Grouping may be made based on expected movement of fire suppression/extinguishing material within the apparatus 400. For example, if the fire suppression/extinguishing material is heavier than air, then a group of storage receptacles may be vertically arranged with a fire suppression device being located at an upper storage receptacle, so that fire suppression/extinguishing material flows downwards into a communicating storage receptacle.
The apparatus includes a circuit 502, a fire suppression mechanism 504, and an array of storage receptacles including a first storage receptacle 506 and a second storage receptacle 508. The storage receptacles 506, 508 may be similar or identical to the other storage receptacles described herein.
The fire suppression mechanism 504 may be similar or identical to the other fire suppression mechanisms described herein.
The first storage receptacle 506 includes a first sensor 510 and a first locking mechanism 512. The first storage receptacle 506 further includes a first lockable access door (not shown) that is lockable by the first locking mechanism 512. The first locking mechanism 512 may include an electromechanical lock (e.g., a solenoid lock) that is controllable by a signal from the circuit 502. The first sensor 510 may be connected to the fire suppression mechanism 504 to detect a sign of fire within the first storage receptacle 506 and, in response, trigger the ejection of fire suppression/extinguishing material into the first storage receptacle 506.
Similarly, the second storage receptacle 508 includes a second sensor 514 and a second locking mechanism 516. The second storage receptacle 508 further includes a second lockable access door (not shown) that is lockable by the second locking mechanism 516. The second locking mechanism 516 may include an electromechanical lock (e.g., a solenoid lock) that is controllable by a signal from the circuit 502. The second sensor 514 may be connected to the fire suppression mechanism 504 to detect a sign of fire within the second storage receptacle 508 and, in response, trigger the ejection of fire suppression/extinguishing material into the second storage receptacle 508.
The circuit 502 may include a processor 518, memory 520, an input/output interface 522, and a communications interface 524.
The processor 518 may include a central processing unit (CPU), a microcontroller, a microprocessor, a processing core, a field-programmable gate array (FPGA), and/or similar device capable of executing instructions. The processor 518 may cooperate with a non-transitory machine-readable medium, such as the memory 520, that may be an electronic, magnetic, optical, and/or other physical storage device that encodes processor-executable instructions. The machine-readable medium may include, for example, random access memory (RAM), read-only memory (ROM), electrically-erasable programmable read-only memory (EEPROM), flash memory, a storage drive, an optical disc, and/or similar.
The input/output interface 522 may connect the processor 518 to the sensors 510, 514 and to the locking mechanisms 512, 516. The input/output interface 522 may communicate data and control signals between the processor 518 and the sensors 510, 514 and locking mechanisms 512, 516. The input/output interface 522 may further connect the fire suppression mechanism 504 to the processor 518.
The processor 518 may control the fire suppression mechanism 504 based on signals received from the sensors 510, 514. In other examples, the fire suppression mechanism 504 is independently controlled based on signals received from the sensors 510, 514, with such signals also being provided to the processor 518 to control the locking mechanisms 512, 516.
The communications interface 524 is connected to the processor 518 and provides data communications between the processor 518 and a computer network 526, such as a local-area network (LAN), wireless LAN, wide-area network (WAN), wireless WWAN, the internet, or similar.
The processor 518 may automatically lock closed the first lockable access door of the first storage receptacle 506 when the fire suppression mechanism 504 activates to suppress a fire in the first storage receptacle 506. The processor 518 may reference a signal received from the first sensor 510 to determine whether to lock the first storage receptacle 506 closed. As such, access to the first storage receptacle 506 may be denied during and after a fire, so as to reduce the risk of harm to users and of damage to the surroundings. The same applies to the second storage receptacle 508 with its sensor 514 and locking mechanism 516. The second storage receptacle 508 may be independently locked closed in response to detection of a sign of fire therein.
The processor 518 may further automatically lock closed the second lockable access door of the second storage receptacle 508 when the fire suppression mechanism 504 activates to suppress a fire in the first storage receptacle 506. That is, multiple different storage receptacles 506, 508 may be locked closed in response to detection of a sign of fire within a particular storage receptacle 506, 508. In some examples, storage receptacles adjacent to a storage receptacle containing a fire may be locked closed to reduce risk posed to a user due to the spread of heat or smoke. When storage receptacles are grouped, all storage receptacles within the group that contains the fire may be locked closed in response to detection of a sign of fire within a member of the group.
A signal outputted by the first sensor 510 or the second sensor 514 may be provided to the processor 518 via the input/output interface 522. The processor 518 may generate a fire notification based on such signal and cause the fire notification to be transmitted by the communications interface 524 to a remote electronic device 528, such as an administrator's computer. This way, a remote administrator may be notified of the fire and may undertake an intervention or schedule maintenance to the apparatus 500. In other examples, the processor 518 may initiate a call to emergency services.
The processor 518 may additionally provide user access to the storage receptacles 506, 508 via the locking mechanisms 512, 516. A user interface, such as a touchscreen, security badge scanner, keypad, or similar may be provided to facilitate user access to devices stored within the apparatus 500. User access may be authorized or controlled by a remote server that may be queried via the communications interface 524. The cause of a fire may be traced back to a particular device and a particular user who deposited that device into the apparatus 500.
The circuit 600 may include a processor 518, memory 520, input/output interface 522, and communications interface 524, as discussed elsewhere herein. The circuit 600 may further include a user interface 602, such as a touchscreen, security badge scanner, keypad, or similar.
The processor 518 may provide user access, via the input/output interface 522, to storage receptacles 506, 508 with different permission levels 604, 606. A user permission level 604 may be assigned to a user who is to access a particular storage receptacle 506, 508 to obtain or return an electronic device. A service permission level 606 may be assigned to a person who is to manually intervene or provide maintenance in case of a fire.
A service permission level 606 may be granted in response to detection of a fire, such as in response to a signal from a sensor at a storage receptacle 506, 508. A service permission level 606 may be time-limited and automatically expire after a time allowed for intervention or service after a fire. In some examples, a service permission level 606 is specific to detected fire events and is different from a maintenance permission level associated with normal maintenance, as the individuals responsible for service after a fire and normal maintenance, and the tasks they are to perform, may be different.
A service permission level 606 may grant access to a storage receptacle 506, 508 that has experienced a fire, as determined by its sensor. For example, a particular code provided to the processor 518 via the communications interface 524 or user interface 602 may trigger the processor 518 to open the affected storage receptacle 506, 508, while keeping other storage receptacles 506, 508 in their present state (e.g., locked). In other examples, a service permission level 606 may grant physical access to a group of storage receptacles 506, 508. For example, a particular code provided to the processor 518 via the communications interface 524 or user interface 602 may trigger the processor 518 to open a group of storage receptacles 506, 508 that share a fire suppression device.
As should be apparent from the above description, a storage apparatus may store a plurality of electronic devices and may provide fire suppression to receptacles that contain the electronic devices. Fire suppression may be provided independently to different storage receptacles. Fire suppression may be provided to a group of storage receptacles or independently to different groups of storage receptacles. Danger posed by fire, such as may be caused by damaged or defective batteries, may be reduced. The availability of electronic devices, even after a fire occurs, may be increased.
The word “or” as used herein is not limited to exclusive alternatives and may denote elements that may be used in combination. The word “or” may be read as “and/or”.
It should be recognized that features and aspects of the various examples provided above may be combined into further examples that also fall within the scope of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/030161 | 4/30/2018 | WO | 00 |