This disclosure generally relates to computer processing, and more specifically relates to a system and method for processing and storing partial data tuples from a streaming application in a database system.
Streaming applications are becoming more common due to the high performance that can be achieved from near real-time processing of streaming data. A streaming application is organized as a data flow graph consisting of multiple operators connected via stream connections that each process streaming data in near real-time. An operator typically takes in streaming data in the form of data tuples, operates on the tuples in some fashion, and outputs the processed tuples to the next operator in the flow graph.
Some stream applications may have many operators processing a stream and making and decisions about the data. The data of a stream in many business analytic processes may ultimately end up in a relational database. These business stream applications may have tuples which include large objects (LOBs). The LOBs can contain text documents, images, or movies and can be stored directly in a database system with sizes up to 2 gigabytes per object and possibly larger for other database systems. Taking the tuples with the LOBs through all the streams operators in the flow may severely diminish performance.
A tuple manager of a database system processes partial tuples from a streaming application and stores them in a database. The partial tuples may include a large object (LOB) that arrives at the database at a different time than the rest of the corresponding tuple. A tuple manager stores partial tuples and uses a partial tuples index to track the partial tuples and coordinate recombination of corresponding partial tuples. The database allows queries to be run on the partial data before the tuples are reconstructed allowing faster access to potentially important data before the arrival and processing of a partial tuple such as an LOB.
The foregoing and other features and advantages will be apparent from the following more particular description, as illustrated in the accompanying drawings.
The disclosure will be described in conjunction with the appended drawings, where like designations denote like elements, and:
The disclosure and claims herein relate to a system and method for processing partial tuples from a streaming application and storing them in a database. The partial tuples may include a large object (LOB) that arrives at the database at a different time than the rest of the corresponding tuple. A tuple manager stores partial tuples and uses a partial tuples index to track the partial tuples and coordinate recombination of corresponding partial tuples. The database allows queries to be run on the partial data before the tuples are reconstructed allowing faster access to potentially important data before the arrival and processing of a partial tuple such as an LOB.
Referring to
Main memory 120 preferably contains an operating system 121 and data 122. Operating system 121 may be a multitasking operating system known in the industry as IBM i; however, those skilled in the art will appreciate that the spirit and scope of this disclosure is not limited to any one operating system. Data 122 may include any data stored or used in computer system 100 The memory 120 further includes one or more streaming applications 123. The memory 120 also includes a database system 124 that includes a tuple manager 125 and a partial tuple index 126. The tuple manager 125 processes partial tuples from a streaming application and stores them in a database using the partial tuple index 126 as described further below.
Computer system 100 utilizes well known virtual addressing mechanisms that allow the programs of computer system 100 to behave as if they only have access to a large, single storage entity instead of access to multiple, smaller storage entities such as main memory 120 and mass storage 155. Therefore, while operating system 121, data 122, streaming application 123, database system 124, the tuple manager 125 and the partial tuple index 126 are shown to reside in main memory 120, those skilled in the art will recognize that these items are not necessarily all completely contained in main memory 120 at the same time. It should also be noted that the term “memory” is used herein generically to refer to the entire virtual memory of computer system 100, and may include the virtual memory of other computer systems coupled to computer system 100.
Processor 110 may be constructed from one or more microprocessors and/or integrated circuits. Processor 110 executes program instructions stored in main memory 120. Main memory 120 stores programs and data that processor 110 may access. When computer system 100 starts up, processor 110 initially executes the program instructions that make up operating system 121 and later executes the program instructions that make up the applications 123 as directed by a user and the streams manager 124.
Although computer system 100 is shown to contain only a single processor and a single system bus, those skilled in the art will appreciate that the system may be practiced using a computer system that has multiple processors and/or multiple buses. In addition, the interfaces that are used preferably each include separate, fully programmed microprocessors that are used to off-load compute-intensive processing from processor 110. However, those skilled in the art will appreciate that these functions may be performed using I/O adapters as well.
Display interface 140 is used to directly connect one or more displays 165 to computer system 100. These displays 165, which may be non-intelligent (i.e., dumb) terminals or fully programmable workstations, are used to provide system administrators and users the ability to communicate with computer system 100. Note, however, that while display interface 140 is provided to support communication with one or more displays 165, computer system 100 does not necessarily require a display 165, because all needed interaction with users and other processes may occur via network interface 150, e.g. web client based users.
Network interface 150 is used to connect computer system 100 to other computer systems or workstations 175 via network 170. Network interface 150 broadly represents any suitable way to interconnect electronic devices, regardless of whether the network 170 comprises present-day analog and/or digital techniques or via some networking mechanism of the future. In addition, many different network protocols can be used to implement a network. These protocols are specialized computer programs that allow computers to communicate across a network. TCP/IP (Transmission Control Protocol/Internet Protocol) is an example of a suitable network protocol.
The present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
As used herein, the term streaming application means an application or program that processes data that may be provided to the application in a continuous data stream. The streaming application processes input data in the form of tuples. A tuple is an individual piece of data in the data stream. Typically, the data in a tuple represents the state of something at a specific point in time. For example, the tuple may represent a stock ticker quote, a patient record, or a temperature reading from an individual sensor. The data stream is thus a running sequence of tuples. Multiple streams and operators that are deployed can be represented in a dataflow graph. When a streams application is compiled, the operators and streams relationships that make up the data flow graph are broken down into one or more individual execution units that are known as processing elements. A processing element may be further broken down into operators. As used herein an operator is any basic functional block that acts on data (tuples) in flight. Thus, an operator is a portion of an application processing element or a streaming application that manipulates the tuple data from the incoming stream and produces the results in the form of an output stream.
Referring again to
In the above example shown in
The above examples focus on the partial tuple as having a large object. Separating out the large object may be advantageous for several reasons. For example, separating out a large object may increase the efficiency of the other operators that can now process much smaller tuples where the large objects are not needed by these operators. There also may be examples of the present invention where the partial tuple that is separated out is not necessarily a large object. In another example, the partial tuple separated out may be security sensitive data that is separated out and sent directly to the database system so that the security sensitive data is not processed through the remaining operators. This might be advantageous where the other operators are located at a less secure facility or other security reasons. In this example, the partial tuple with the security sensitive data may arrive at the database before the remaining portions of the tuple arrives at the database. Alternatively, the tuples may be separated for performance reasons. For example, the tuples may be separated so that important or urgent data is send to the database first and other data sent later.
In the above examples, the operator separated the tuple into two partial tuples. In some situations it may be advantageous to separate a single tuple into three or more partial tuples. The operator could then send the multiple partial tuples separately to other tuples down-stream in the streaming application or directly to the tuple manager in the database system. The tuple manager can assemble all the partial tuples using the partial tuple index as described above.
Referring to
The claims and disclosure herein support an apparatus comprising: at least one processor; a memory coupled to the at least one processor; and a tuple manager residing in the memory and executed by the at least one processor that receives partial tuples from a first and second operator of a streaming application, wherein the tuple manager stores the partial tuples in a database system using a partial tuple index to coordinate recombination of corresponding partial tuples.
The claims and disclosure herein further support a computer-implemented method executed by at least one processor for processing and storing partial data tuples from a streaming application in a database system comprising: receiving partial tuples from a first operator and a second operator of the streaming application; and storing the partial tuples in the database system using a partial tuple index to coordinate recombination of corresponding partial tuples.
The claims and disclosure herein additionally support a computer-implemented method executed by at least one processor for processing and storing partial data tuples from a streaming application in a database system comprising: receiving partial tuples from a first operator and a second operator of the streaming application; and storing the partial tuples in the database system using a partial tuple index to coordinate recombination of corresponding partial tuples by: receiving a first partial tuple from one of the first or second operators; determining whether the first partial tuple has a matching tuple in an entry of the partial tuple index; where there is no matching tuple, storing the first partial tuple in a data table and updating the partial tuple index to include a new entry with a tuple identification and a relative record number where the partial tuple was stored in the data table; receiving a second partial tuples from one of the first or second operators; determining whether the second tuple has a matching tuple in an entry of the partial tuple index; and where there is a matching tuple the tuple manager, writing the second partial tuple to the data table in the database system using a relative record number from the partial tuple index of the matching first partial tuple and deleting the entry; and receiving incoming tuples by the first operator, separating out partial tuple data from an incoming tuple, sending the separated out partial tuple data to the database system, and sending the remaining partial tuple to the second operator.
A tuple manager of a database system processes partial tuples from a streaming application and stores them in a database. The partial tuples may include a large object (LOB) that arrives at the database at a different time than the rest of the corresponding tuple. A tuple manager stores partial tuples and uses a partial tuples index to track the partial tuples and coordinate recombination of corresponding partial tuples. The database allows queries to be run on the partial data before the tuples are reconstructed allowing faster access to potentially important data before the arrival and processing of a partial tuple such as an LOB.
One skilled in the art will appreciate that many variations are possible within the scope of the claims. Thus, while the disclosure is particularly shown and described above, it will be understood by those skilled in the art that these and other changes in form and details may be made therein without departing from the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5913912 | Nishimura | Jun 1999 | A |
6353821 | Gray | Mar 2002 | B1 |
7774336 | Beyer | Aug 2010 | B2 |
7849227 | Kashiyama | Dec 2010 | B2 |
8286191 | Amini | Oct 2012 | B2 |
8886822 | Pedersen | Nov 2014 | B2 |
8959313 | Santosuosso | Feb 2015 | B2 |
8990416 | Shukla | Mar 2015 | B2 |
9286352 | Park | Mar 2016 | B2 |
9325742 | Barsness | Apr 2016 | B1 |
9563486 | Narsude | Feb 2017 | B1 |
9659063 | Cammert | May 2017 | B2 |
9805095 | Deshmukh | Oct 2017 | B2 |
9836467 | Barsness | Dec 2017 | B1 |
9996561 | Barsness | Jun 2018 | B1 |
10025826 | Barsness | Jul 2018 | B2 |
10127283 | Barsness | Nov 2018 | B2 |
10515080 | Barsness | Dec 2019 | B2 |
10691489 | Barsness | Jun 2020 | B2 |
10885050 | Barsness | Jan 2021 | B2 |
20040268244 | Levanoni | Dec 2004 | A1 |
20050192961 | Dittrich | Sep 2005 | A1 |
20060064579 | Aaron | Mar 2006 | A1 |
20060230029 | Yan | Oct 2006 | A1 |
20070006173 | Sohm | Jan 2007 | A1 |
20070112866 | Olson-Williams | May 2007 | A1 |
20070136254 | Choi | Jun 2007 | A1 |
20090150396 | Elisha | Jun 2009 | A1 |
20090171999 | McColl et al. | Jul 2009 | A1 |
20100211572 | Beyer | Aug 2010 | A1 |
20100293301 | Amini | Nov 2010 | A1 |
20100312801 | Ostrovsky et al. | Dec 2010 | A1 |
20110010690 | Howard et al. | Jan 2011 | A1 |
20110064079 | Lim | Mar 2011 | A1 |
20110213802 | Singh et al. | Sep 2011 | A1 |
20110239048 | Andrade | Sep 2011 | A1 |
20120106366 | Gauvin | May 2012 | A1 |
20120179809 | Barsness | Jul 2012 | A1 |
20130091123 | Chen | Apr 2013 | A1 |
20130111038 | Girard | May 2013 | A1 |
20130212066 | Dehn | Aug 2013 | A1 |
20130239100 | Andrade | Sep 2013 | A1 |
20140040915 | Chen | Feb 2014 | A1 |
20140095462 | Park | Apr 2014 | A1 |
20140095473 | Srinivasan | Apr 2014 | A1 |
20140201211 | Holstege | Jul 2014 | A1 |
20150142952 | Bragstad | May 2015 | A1 |
20150227415 | Alves | Aug 2015 | A1 |
20160042039 | Kaufmann | Feb 2016 | A1 |
20160102367 | Ferrando | Apr 2016 | A1 |
20160342658 | Skrzypczak | Nov 2016 | A1 |
20170004153 | Carter et al. | Jan 2017 | A1 |
20170116050 | Thukkaram | Apr 2017 | A1 |
20170116210 | Park | Apr 2017 | A1 |
20170116283 | Park | Apr 2017 | A1 |
20180246936 | Srinivasan | Aug 2018 | A1 |
20190102431 | Bishnoi | Apr 2019 | A1 |
20200249990 | Barsness | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
2013078231 | May 2013 | WO |
WO2016131413 | Aug 2016 | WO |
WO2016111950 | Jul 2017 | WO |
Entry |
---|
Childs et al., “A Contract Based System for Large Data Visualization”, IEEE Visualization 2005. |
Anonymous, “PipelineDB Documentation”, (Archived screen shots of multiple pages published on World Wide Web at http://docs.pipelinedb.com, available from //https://web.archive.org/web/*/docs.pipelinedb.com, archived on Aug. 25, 2016, original publication date unknown). |
Anonymous, “Streaming Events from PostgreSQL Clients”, (Archived screen shots of multiple pages published on World Wide Web at http://pipelinedb.com/examples, available from https://web.archive.org/web/*/www.pipelinedb.com/examples, archived on Dec. 21, 2015, original publication date unknown). |
Anonymous, “The Streaming SQL Database”, (Archived screen shot of page published on World Wide Web at http://www.pipelinedb.com, available from https://web.archive.org/web/*/www.pipelinedb.com, archived on Oct. 13, 2016, original publication date unknown). |
Avnur et al., “Eddies: Continuously Adaptive Query Processing”, ACM SIGMOD Record vol. 29, No. 2, ACM, 2000. |
Babu et al., “Adaptive Ordering of Pipelined Stream Filters”, ACM Sigmod 2004 Jun. 13-18, 2004, Paris, France. |
Beth Plale et al., Dynamic Querying of Streaming Data with the dQUOB System, IEEE Transactions On Parallel and Distributed Systems, vol. 14, No. 4, pp. 422-426 (Apr. 2003). |
Deshpande et al., “Adaptive Query Processing”, Foundations and Trends in Databases, vol. 1, No. 1 (2007), pp. 1-140. |
Gabriela Jacques-Silva et al., “Consistent Regions Guaranteed Tuple Processing in IBM Streams”, Proceedings of the VLDB Endowment, vol. 9, No. 13, pp. 1341-1342 (2016). |
Golab et al., “Issues in Data Stream Management”, ACM SIGMOD Record, vol. 32, No. 2, Jun. 2003. |
Jaedicke, Michael. “New Concepts for Parallel Object-Relational Query Processing.” Lecture Notes in Computer Science (2001), https://link.springer.com/book/10.1007%2F3-540-45507-8. |
Laxman et al., “Stream Prediction Using a Generative Model Based On Frequent Episodes in Event Sequences”, KDD '08, Las Vegas, Nevada, USA, Aug. 27, 2008, ACM 978-1-60558-193-Apr. 8, 08, pp. 453-461. |
Qiong Zou et al., “From a Stream of Relational Queries to Distributed Stream Processing”, Proceedings fo the VLDB Endowment, vol. 3, No. 2, 2010, pp. 1394-1405 (Sep. 2010). |
Sotiropoulos, et al., “LinkViews: An Integration Framework for Relational and Stream Systems”, In BIRTE Workshop, Int. Conf. on VLDB, published at http://birte2013.cs.aau.dk/files/Sotiropoulos.pdf (Sep. 2013). |
Splunk, Inc., “Splunk DB Connect Fact Sheet”, published on World Wide Web at https://www.splunk.com/web_assets/pdfs/secure/Splunk_for_DB_Connect.pdf, available from https://web.archive.org/web/*/https://www.splunk.com/web_assets/pdrs/secure/Splunk_for_DB_Connect.pdf (archived on Sep. 24, 2015, original publication date unknown). |
Tian et al., “Tuple Routing Strategies for Distributed Eddies”, Proceedings of the 29th International Conference on Very Large Databases, vol. 29, Berlin, Germany, VLDB Endowment, 2003. |
Number | Date | Country | |
---|---|---|---|
20200134073 A1 | Apr 2020 | US |