Storing snapshot changes with snapshots

Information

  • Patent Grant
  • 10496487
  • Patent Number
    10,496,487
  • Date Filed
    Wednesday, December 3, 2014
    9 years ago
  • Date Issued
    Tuesday, December 3, 2019
    4 years ago
Abstract
In one aspect, a method includes sending a first snapshot of a volume at a production site to a backup device at a replication site, sending a second snapshot of the volume to the backup device and sending metadata of differences between the first and second snapshots to the backup device.
Description
BACKGROUND

Computer data is vital to today's organizations and a significant part of protection against disasters is focused on data protection. As solid-state memory has advanced to the point where cost of memory has become a relatively insignificant factor, organizations can afford to operate with systems that store and process terabytes of data.


Conventional data protection systems include tape backup drives, for storing organizational production site data on a periodic basis. Another conventional data protection system uses data replication, by generating a copy of production site data of an organization on a secondary backup storage system, and updating the backup with changes. The backup storage system may be situated in the same physical location as the production storage system, or in a physically remote location. Data replication systems generally operate either at the application level, at the file system level, or at the data block level.


SUMMARY

In one aspect, a method includes sending a first snapshot of a volume at a production site to a backup device at a replication site, sending a second snapshot of the volume to the backup device and sending metadata of differences between the first and second snapshots to the backup device.


In another aspect, an apparatus includes electronic hardware circuitry configured to send a first snapshot of a volume at a production site to a backup device at a replication site, send a second snapshot of the volume to the backup device and send metadata of differences between the first and second snapshots to the backup device.


In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to send a first snapshot of a volume at a production site to a backup device at a replication site, send a second snapshot of the volume to the backup device and send metadata of differences between the first and second snapshots to the backup device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an example of a data protection system.



FIG. 2 is an illustration of an example of a journal history of write transactions for a storage system.



FIG. 3 is a block diagram of an example of a system to initialize a backup snapshot.



FIG. 4 is a flowchart of an example of a process to perform snapshot replication to a replication site.



FIG. 5 is a flowchart of an example of a process to restore a volume using data saved at the replication site using the process of FIG. 4.



FIG. 6 is a flowchart of an example, of a process to manage a backup device after deletion of a snapshot from the replication site.



FIG. 7 is a simplified block diagram of an example of a computer on which any of the processes of FIGS. 4 to 6 may be implemented.





DETAILED DESCRIPTION

Described herein are techniques to perform snapshot replication while saving differences between snapshots.


The following definitions may be useful in understanding the specification and claims.


BACKUP SITE—a facility where replicated production site data is stored; the backup site may be located in a remote site or at the same location as the production site; a backup site may be a virtual or physical site.


BOOKMARK—a bookmark is metadata information stored in a replication journal which indicates a point in time.


CDP—Continuous Data Protection, a full replica of a volume or a set of volumes along with a journal which allows any point in time access, the CDP copy is at the same site, and maybe the same storage array of the production site.


DATA PROTECTION APPLIANCE (DPA)—a computer or a cluster of computers, or a set of processes that serve as a data protection appliance, responsible for data protection services including inter alia data replication of a storage system, and journaling of I/O requests issued by a host computer to the storage system. The DPA may be a physical device, a virtual device running, or may be a combination of a virtual and physical device.


DEDUPLICATED STORAGE SYSTEM—any storage system capable of storing deduplicated or space reduced data, and in some examples, is an EMC® DataDomain® system. Deduplicated data may also be any data that is processed to remove redundant data.


HOST—at least one computer or networks of computers that runs at least one data processing application that issues I/O requests to one or more storage systems; a host is an initiator with a SAN.


HOST DEVICE—an internal interface in a host, to a logical storage unit.


IMAGE—a copy of a logical storage unit at a specific point in time.


INITIATOR—a node in a SAN that issues I/O requests.


I/O REQUEST—an input/output request (sometimes referred to as an I/O or IO), which may be a read I/O request (sometimes referred to as a read request or a read) or a write I/O request (sometimes referred to as a write request or a write).


JOURNAL—a record of write transactions issued to a storage system; used to maintain a duplicate storage system, and to roll back the duplicate storage system to a previous point in time.


LOGICAL UNIT—a logical entity provided by a storage system for accessing data from the storage system. The logical disk may be a physical logical unit or a virtual logical unit.


LUN—a logical unit number for identifying a logical unit.


PHYSICAL LOGICAL UNIT—a physical entity, such as a disk or an array of disks, for storing data in storage locations that can be accessed by address.


PRODUCTION SITE—a facility where one or more host computers run data processing applications that write data to a storage system and read data from the storage system.


REMOTE ACKNOWLEDGEMENTS—an acknowledgement from remote DPA to the local DPA that data arrived at the remote DPA (either to the appliance or the journal).


SNAPSHOT—a snapshot is an image or differential representations of an image, i.e., the snapshot may have pointers to the original volume, and may point to log volumes for changed locations. Snapshots may be combined into a snapshot array, which may represent different images over a time period.


SPLITTER/PROTECTION AGENT—is an agent running either on a production host a switch or a storage array which can intercept I/Os and split them to a DPA and to the storage array, fail I/Os, redirect I/Os or do any other manipulation to the I/O; the splitter or protection agent may be used in both physical and virtual systems. The splitter may be in the I/O stack of a system and may be located in the hypervisor for virtual machines. In some examples, a splitter may be referred to as an Open Replicator Splitter (ORS).


SPLITTER ACKNOWLEDGEMENT—an acknowledgement from a DPA to the protection agent (splitter) that data has been received at the DPA; this may be achieved by an SCSI status command.


SAN—a storage area network of nodes that send and receive an I/O and other requests, each node in the network being an initiator or a target, or both an initiator and a target.


SOURCE SIDE—a transmitter of data within a data replication workflow, during normal operation a production site is the source side; and during data recovery a backup site is the source side, sometimes called a primary side. Source side may be a virtual or physical site.


STORAGE SYSTEM—a SAN entity that provides multiple logical units for access by multiple SAN initiators.


STREAMING—transmitting data in real time, from a source to a destination, as the data is read or generated.


SYNTHESIZE—generating a new file, for example, using pointers from existing files, without actually copying the referenced data. In one particular example, a new file representing a volume at a points-in-time may be generated using pointers to a file representing a previous point-in-time, as well pointers to journal representing changes to the volume.


TARGET—a node in a SAN that replies to I/O requests.


TARGET SIDE—a receiver of data within a data replication workflow; during normal operation a back site is the target side, and during data recovery a production site is the target side, sometimes called a secondary side. The target side may be a virtual or physical site.


THIN PROVISIONING—thin provisioning involves the allocation of physical storage when it is needed rather than allocating the entire physical storage in the beginning. Thus, use of thin provisioning is known to improve storage utilization.


THIN LOGICAL UNIT—a thin logical unit is a logical unit that uses thin provisioning.


VIRTUAL LOGICAL UNIT—a virtual storage entity which is treated as a logical unit by virtual machines.


WAN—a wide area network that connects local networks and enables them to communicate with one another, such as the Internet.


A description of journaling and some techniques associated with journaling may be described in the patent titled “METHODS AND APPARATUS FOR OPTIMAL JOURNALING FOR CONTINUOUS DATA REPLICATION” and with U.S. Pat. No. 7,516,287, which is hereby incorporated by reference.


Referring to FIG. 1, a data protection system 100 includes two sites; Site I, which is a production site, and Site II, which is a backup site or replica site. Under normal operation the production site is the source side of system 100, and the backup site is the target side of the system. The backup site is responsible for replicating production site data. Additionally, the backup site enables roll back of Site I data to an earlier pointing time, which may be used in the event of data corruption of a disaster, or alternatively in order to view or to access data from an earlier point in time.



FIG. 1 is an overview of a system for data replication of either physical or virtual logical units. Thus, one of ordinary skill in the art would appreciate that in a virtual environment a hypervisor, in one example, would consume logical units and generate a distributed file system on them such as VMFS generates files in the file system and expose the files as logical units to the virtual machines (each VMDK is seen as a SCSI device by virtual hosts). In another example, the hypervisor consumes a network based file system and exposes files in the NFS as SCSI devices to virtual hosts.


During normal operations, the direction of replicate data flow goes from source side to target side. It is possible, however, for a user to reverse the direction of replicate data flow, in which case Site I starts to behave as a target backup site, and Site II starts to behave as a source production site. Such change of replication direction is referred to as a “failover”. A failover may be performed in the event of a disaster at the production site, or for other reasons. In some data architectures, Site I or Site II behaves as a production site for a portion of stored data, and behaves simultaneously as a backup site for another portion of stored data. In some data architectures, a portion of stored data is replicated to a backup site, and another portion is not.


The production site and the backup site may be remote from one another, or they may both be situated at a common site, local to one another. Local data protection has the advantage of minimizing data lag between target and source, and remote data protection has the advantage is being robust in the event that a disaster occurs at the source side.


The source and target sides communicate via a wide area network (WAN) 128, although other types of networks may be used.


Each side of system 100 includes three major components coupled via a storage area network (SAN); namely, (i) a storage system, (ii) a host computer, and (iii) a data protection appliance (DPA). Specifically with reference to FIG. 1, the source side SAN includes a source host computer 104, a source storage system 108, and a source DPA 112. Similarly, the target side SAN includes a target host computer 116, a target storage system 120, and a target DPA 124. As well, the protection agent (sometimes referred to as a splitter) may run on the host, or on the storage, or in the network or at a hypervisor level, and that DPAs are optional and DPA code may run on the storage array too, or the DPA 124 may run as a virtual machine.


Generally, a SAN includes one or more devices, referred to as “nodes”. A node in a SAN may be an “initiator” or a “target”, or both. An initiator node is a device that is able to initiate requests to one or more other devices; and a target node is a device that is able to reply to requests, such as SCSI commands, sent by an initiator node. A SAN may also include network switches, such as fiber channel switches. The communication links between each host computer and its corresponding storage system may be any appropriate medium suitable for data transfer, such as fiber communication channel links.


The host communicates with its corresponding storage system using small computer system interface (SCSI) commands.


System 100 includes source storage system 108 and target storage system 120. Each storage system includes physical storage units for storing data, such as disks or arrays of disks. Typically, storage systems 108 and 120 are target nodes. In order to enable initiators to send requests to storage system 108, storage system 108 exposes one or more logical units (LU) to which commands are issued. Thus, storage systems 108 and 120 are SAN entities that provide multiple logical units for access by multiple SAN initiators.


Logical units are a logical entity provided by a storage system, for accessing data stored in the storage system. The logical unit may be a physical logical unit or a virtual logical unit. A logical unit is identified by a unique logical unit number (LUN). Storage system 108 exposes a logical unit 136, designated as LU A, and storage system 120 exposes a logical unit 156, designated as LU B.


LU B is used for replicating LU A. As such, LU B is generated as a copy of LU A. In one example, LU B is configured so that its size is identical to the size of LU A. Thus, for LU A, storage system 120 serves as a backup for source side storage system 108. Alternatively, as mentioned hereinabove, some logical units of storage system 120 may be used to back up logical units of storage system 108, and other logical units of storage system 120 may be used for other purposes. Moreover, there is symmetric replication whereby some logical units of storage system 108 are used for replicating logical units of storage system 120, and other logical units of storage system 120 are used for replicating other logical units of storage system 108.


System 100 includes a source side host computer 104 and a target side host computer 116. A host computer may be one computer, or a plurality of computers, or a network of distributed computers, each computer may include inter alia a conventional CPU, volatile and non-volatile memory, a data bus, an I/O interface, a display interface and a network interface. Generally a host computer runs at least one data processing application, such as a database application and an e-mail server.


Generally, an operating system of a host computer generates a host device for each logical unit exposed by a storage system in the host computer SAN. A host device is a logical entity in a host computer, through which a host computer may access a logical unit. Host device 104 identifies LU A and generates a corresponding host device 140, designated as Device A, through which it can access LU A. Similarly, host computer 116 identifies LU B and generates a corresponding device 160, designated as Device B.


In the course of continuous operation, host computer 104 is a SAN initiator that issues I/O requests (write/read operations) through host device 140 to LU A using, for example, SCSI commands. Such requests are generally transmitted to LU A with an address that includes a specific device identifier, an offset within the device, and a data size. Offsets are generally aligned to 512 byte blocks. The average size of a write operation issued by host computer 104 may be, for example, 10 kilobytes (KB); i.e., 20 blocks. For an I/O rate of 50 megabytes (MB) per second, this corresponds to approximately 5,000 write transactions per second.


System 100 includes two data protection appliances, a source side DPA 112 and a target side DPA 124. A DPA performs various data protection services, such as data replication of a storage system, and journaling of I/O requests issued by a host computer to source side storage system data. As explained in detail herein, when acting as a target side DPA, a DPA may also enable roll back of data to an earlier point in time, and processing of rolled back data at the target site. Each DPA 112 and 124 is a computer that includes inter alia one or more conventional CPUs and internal memory.


For additional safety precaution, each DPA is a cluster of such computers. Use of a cluster ensures that if a DPA computer is down, then the DPA functionality switches over to another computer. The DPA computers within a DPA cluster communicate with one another using at least one communication link suitable for data transfer via fiber channel or IP based protocols, or such other transfer protocol. One computer from the DPA cluster serves as the DPA leader. The DPA cluster leader coordinates between the computers in the cluster, and may also perform other tasks that require coordination between the computers, such as load balancing.


In the architecture illustrated in FIG. 1, DPA 112 and DPA 124 are standalone devices integrated within a SAN. Alternatively, each of DPA 112 and DPA 124 may be integrated into storage system 108 and storage system 120, respectively, or integrated into host computer 104 and host computer 116, respectively. Both DPAs communicate with their respective host computers through communication lines such as fiber channels using, for example, SCSI commands or any other protocol.


DPAs 112 and 124 are configured to act as initiators in the SAN; i.e., they can issue I/O requests using, for example, SCSI commands, to access logical units on their respective storage systems. DPA 112 and DPA 124 are also configured with the necessary functionality to act as targets; i.e., to reply to I/O requests, such as SCSI commands, issued by other initiators in the SAN, including inter alia their respective host computers 104 and 116. Being target nodes, DPA 112 and DPA 124 may dynamically expose or remove one or more logical units.


As described hereinabove, Site I and Site II may each behave simultaneously as a production site and a backup site for different logical units. As such, DPA 112 and DPA 124 may each behave as a source DPA for some logical units, and as a target DPA for other logical units, at the same time.


Host computer 104 and host computer 116 include protection agents 144 and 164, respectively. Protection agents 144 and 164 intercept SCSI commands issued by their respective host computers, via host devices to logical units that are accessible to the host computers. A data protection agent may act on an intercepted SCSI commands issued to a logical unit, in one of the following ways: send the SCSI commands to its intended logical unit; redirect the SCSI command to another logical unit; split the SCSI command by sending it first to the respective DPA; after the DPA returns an acknowledgement, send the SCSI command to its intended logical unit; fail a SCSI command by returning an error return code; and delay a SCSI command by not returning an acknowledgement to the respective host computer.


A protection agent may handle different SCSI commands, differently, according to the type of the command. For example, a SCSI command inquiring about the size of a certain logical unit may be sent directly to that logical unit, while a SCSI write command may be split and sent first to a DPA associated with the agent. A protection agent may also change its behavior for handling SCSI commands, for example as a result of an instruction received from the DPA.


Specifically, the behavior of a protection agent for a certain host device generally corresponds to the behavior of its associated DPA with respect to the logical unit of the host device. When a DPA behaves as a source site DPA for a certain logical unit, then during normal course of operation, the associated protection agent splits I/O requests issued by a host computer to the host device corresponding to that logical unit. Similarly, when a DPA behaves as a target device for a certain logical unit, then during normal course of operation, the associated protection agent fails I/O requests issued by host computer to the host device corresponding to that logical unit.


Communication between protection agents and their respective DPAs may use any protocol suitable for data transfer within a SAN, such as fiber channel, or SCSI over fiber channel. The communication may be direct, or via a logical unit exposed by the DPA. Protection agents communicate with their respective DPAs by sending SCSI commands over fiber channel.


Protection agents 144 and 164 are drivers located in their respective host computers 104 and 116. Alternatively, a protection agent may also be located in a fiber channel switch, or in any other device situated in a data path between a host computer and a storage system or on the storage system itself. In a virtualized environment, the protection agent may run at the hypervisor layer or in a virtual machine providing a virtualization layer.


What follows is a detailed description of system behavior under normal production mode, and under recovery mode.


In production mode DPA 112 acts as a source site DPA for LU A. Thus, protection agent 144 is configured to act as a source side protection agent; i.e., as a splitter for host device A. Specifically, protection agent 144 replicates SCSI I/O write requests. A replicated SCSI I/O write request is sent to DPA 112. After receiving an acknowledgement from DPA 124, protection agent 144 then sends the SCSI I/O write request to LU A. After receiving a second acknowledgement from storage system 108 host computer 104 acknowledges that an I/O command complete.


When DPA 112 receives a replicated SCSI write request from data protection agent 144, DPA 112 transmits certain I/O information characterizing the write request, packaged as a “write transaction”, over WAN 128 to DPA 124 on the target side, for journaling and for incorporation within target storage system 120.


DPA 112 may send its write transactions to DPA 124 using a variety of modes of transmission, including inter alia (i) a synchronous mode, (ii) an asynchronous mode, and (iii) a snapshot mode. In synchronous mode, DPA 112 sends each write transaction to DPA 124, receives back an acknowledgement from DPA 124, and in turns sends an acknowledgement back to protection agent 144. Protection agent 144 waits until receipt of such acknowledgement before sending the SCSI write request to LU A.


In asynchronous mode, DPA 112 sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


In snapshot mode, DPA 112 receives several I/O requests and combines them into an aggregate “snapshot” of all write activity performed in the multiple I/O requests, and sends the snapshot to DPA 124, for journaling and for incorporation in target storage system 120. In snapshot mode DPA 112 also sends an acknowledgement to protection agent 144 upon receipt of each I/O request, before receiving an acknowledgement back from DPA 124.


For the sake of clarity, the ensuing discussion assumes that information is transmitted at write-by-write granularity.


While in production mode, DPA 124 receives replicated data of LU A from DPA 112, and performs journaling and writing to storage system 120. When applying write operations to storage system 120, DPA 124 acts as an initiator, and sends SCSI commands to LU B.


During a recovery mode, DPA 124 undoes the write transactions in the journal, so as to restore storage system 120 to the state it was at, at an earlier time.


As described hereinabove, LU B is used as a backup of LU A. As such, during normal production mode, while data written to LU A by host computer 104 is replicated from LU A to LU B, host computer 116 should not be sending I/O requests to LU B. To prevent such I/O requests from being sent, protection agent 164 acts as a target site protection agent for host Device B and fails I/O requests sent from host computer 116 to LU B through host Device B.


Target storage system 120 exposes a logical unit 176, referred to as a “journal LU”, for maintaining a history of write transactions made to LU B, referred to as a “journal”. Alternatively, journal LU 176 may be striped over several logical units, or may reside within all of or a portion of another logical unit. DPA 124 includes a journal processor 180 for managing the journal.


Journal processor 180 functions generally to manage the journal entries of LU B. Specifically, journal processor 180 enters write transactions received by DPA 124 from DPA 112 into the journal, by writing them into the journal LU, reads the undo information for the transaction from LU B. updates the journal entries in the journal LU with undo information, applies the journal transactions to LU B, and removes already-applied transactions from the journal.


Referring to FIG. 2, which is an illustration of a write transaction 200 for a journal. The journal may be used to provide an adaptor for access to storage 120 at the state it was in at any specified point in time. Since the journal includes the “undo” information necessary to roll back storage system 120, data that was stored in specific memory locations at the specified point in time may be obtained by undoing write transactions that occurred subsequent to such point in time.


Write transaction 200 generally includes the following fields: one or more identifiers; a time stamp, which is the date & time at which the transaction was received by source side DPA 112; a write size, which is the size of the data block; a location in journal LU 176 where the data is entered; a location in LU B where the data is to be written; and the data itself.


Write transaction 200 is transmitted from source side DPA 112 to target side DPA 124. As shown in FIG. 2, DPA 124 records the write transaction 200 in the journal that includes four streams. A first stream, referred to as a DO stream, includes new data for writing in LU B. A second stream, referred to as an DO METADATA stream, includes metadata for the write transaction, such as an identifier, a date & time, a write size, a beginning address in LU B for writing the new data in, and a pointer to the offset in the DO stream where the corresponding data is located. Similarly, a third stream, referred to as an UNDO stream, includes old data that was overwritten in LU B; and a fourth stream, referred to as an UNDO METADATA, include an identifier, a date & time, a write size, a beginning address in LU B where data was to be overwritten, and a pointer to the offset in the UNDO stream where the corresponding old data is located.


In practice each of the four streams holds a plurality of write transaction data. As write transactions are received dynamically by target DPA 124, they are recorded at the end of the DO stream and the end of the DO METADATA stream, prior to committing the transaction. During transaction application, when the various write transactions are applied to LU B, prior to writing the new DO data into addresses within the storage system, the older data currently located in such addresses is recorded into the UNDO stream. In some examples, the metadata stream (e.g., UNDO METADATA stream or the DO METADATA stream) and the data stream (e.g., UNDO stream or DO stream) may be kept in a single stream each (i.e., one UNDO data and UNDO METADATA stream and one DO data and DO METADATA stream) by interleaving the metadata into the data stream.


Referring to FIG. 3, a data replication system 300 includes a DPA 302a and a storage array 306 at a production site and a backup storage 316 at replication site. The DPA 302a is connected to the backup storage 316 by a network 304 (e.g., a wide area network (WAN), local area network (LAN), Internet and so forth). The storage array 306 includes a storage volume 308. The backup storage 316 includes snapshots of the storage volume (e.g., a first snapshot of the storage volume 322a, a second snapshot of the storage volume 322b, a third snapshot of the storage volume 322c and a fourth snapshot of the storage volume 322d).


The backup storage 316 also includes objects (e.g., files) that include differences between snapshots. For example, an object 332a includes differences between first and second snapshots of the volume 308, an object 332b includes differences between second and third snapshots of the volume 308 and an object 332c includes differences between third and fourth snapshots of the volume 308. In one example, the differences are represented as a metadata of differences that includes metadata of locations different between the snapshots of the volume. The objects 332a-332c may be stored as a bitmap or as a list of differences or in any other format.


In one example, the backup storage 316 is a deduplication device. In some examples, the backup storage is a device in a cloud network environment. In another example a cloud storage device is an object store.


If the storage volume 308 is completely lost then the whole replica snapshot needs to be restored to the storage volume 306; however, if there is a logical corruption of the storage volume 308 the volume 308 may be restored using partial recovery of only the corrupted blocks. That is, a replication engine (not shown) on the production site has knowledge of the current blocks which are different between the production and replica site. If the system 300 needs to restore the latest snapshot from the replica site it only needs to transmit the blocks suspected as being different between the production and replica sites. If the user wants to restore an older snapshot, then there is a need to know the differences between the latest snapshot which arrived to the replica site and the snapshot the user desires to recover. While some storage systems have the ability to deliver differences between two points-in-time, most systems, specifically cloud-based systems do not have this ability. System 300 ensures that the differences are sent to the replications site as described in FIGS. 4 to 6 herein.


Referring to FIG. 4, a process 400 is an example of a process to perform snapshot replication to a replication site. Process 400 generates the first snapshot of the volume (402) and sends the first snapshot to the replications site (406). For example, a snapshot of the volume 308 is taken and shipped to the backup storage 316 to be stored as the first snapshot 322a.


Process 400 generates the next snapshot of the volume (408) and sends the current snapshot to the replication site (410). For example, a snapshot of the volume 308 is taken and shipped to the backup storage 316 to be stored as the second snapshot 322b.


Process 400 sends differences between the previous snapshot and the latest snapshot to the replication site (418). For example, if the previous snapshot is the first snapshot 322a and the current snapshot is the second snapshot 322b, then the differences between the first and second snapshots are sent to the replication site and stored at the backup storage 316 as the object 332a.


Referring to FIG. 5, a process 500 is an example of a process to restore a volume using data that was saved at the replication site using the process 400. Process 500 receives notification to restore a snapshot (502). For example, a notification is received to restore the first snapshot 322a.


Process 500 merges differences between requested snapshot and the latest snapshot (506) to a unified differences list or bitmap, for example, and sends data corresponding to the merged differences to the production site (508). For example, if the first snapshot 322a is the requested snapshot to restore and if the latest snapshot is the fourth snapshot 322d, then the objects 332a-332c are merged and data corresponding to the merged differences is then copied from the replication site back to the production site (e.g., the data in the first snapshot 322a that is different from the fourth snapshot 322d and the data which changed since the first snapshot was shipped is sent to the production site).


Referring to FIG. 6, a process 600 is an example of a process to manage a backup device after deletion of a snapshot from the replication site. Process 600 receives a notification that a snapshot has been erased at the replication site (602) and determines if the snapshot deleted from the replication site is the oldest snapshot (606).


If the snapshot deleted is the oldest snapshot then process 600 deletes the corresponding differences object (610). For example, if the first snapshot of the storage volume 322a is deleted from the backup storage 316 then the object 332a of the differences between the first and second snapshots is deleted.


If the snapshot deleted is not the oldest snapshot then process 600 merges the differences objects (616). For example, if the second snapshot of the storage volume 322b is deleted from the backup storage 316 then the object 332a of the differences between the first and second snapshots is merged with the object 332b of the differences between the second and thirds snapshots to a single object.


Referring to FIG. 7, in one example, a computer 700 includes a processor 702, a volatile memory 704, a non-volatile memory 706 (e.g., hard disk) and the user interface (UI) 708 (e.g., a graphical user interface, a mouse, a keyboard, a display, touch screen and so forth). The non-volatile memory 706 stores computer instructions 712, an operating system 716 and data 718. In one example, the computer instructions 712 are executed by the processor 702 out of volatile memory 704 to perform all or part of the processes described herein (e.g., processes 400, 500 and 500).


The processes described herein (e.g., processes 400, 500 and 500) are not limited to use with the hardware and software of FIG. 7; they may find applicability in any computing or processing environment and with any type of machine or set of machines that is capable of running a computer program. The processes described herein may be implemented in hardware, software, or a combination of the two. The processes described herein may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a non-transitory machine-readable medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform any of the processes described herein and to generate output information.


The system may be implemented, at least in part, via a computer program product, (e.g., in a non-transitory machine-readable storage medium such as, for example, a non-transitory computer-readable medium), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a non-transitory machine-readable medium that is readable by a general or special purpose programmable computer for configuring and operating the computer when the non-transitory machine-readable medium is read by the computer to perform the processes described herein. For example, the processes described herein may also be implemented as a non-transitory machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with the processes. A non-transitory machine-readable medium may include but is not limited to a hard drive, compact disc, flash memory, non-volatile memory, volatile memory, magnetic diskette and so forth but does not include a transitory signal per se.


The processes described herein are not limited to the specific examples described. For example, the processes 400, 500 and 500 are not limited to the specific processing order of FIGS. 4 to 6, respectively. Rather, any of the processing blocks of FIGS. 4 to 6 may be re-ordered, combined or removed, performed in parallel or in serial, as necessary, to achieve the results set forth above.


The processing blocks (for example, in the processes 400, 500 and 500) associated with implementing the system may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field-programmable gate array) and/or an ASIC (application-specific integrated circuit)). All or part of the system may be implemented using electronic hardware circuitry that include electronic devices such as, for example, at least one of a processor, a memory, a programmable logic device or a logic gate.


Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A method comprising: taking, at a first point in time, a first snapshot of a volume on a storage array, the storage array located at a production site;electronically sending the first snapshot of the volume through a network to a backup device at a replication site for storage on the backup device;taking, by the production site at a second point in time, a second snapshot of the volume, the second point-in time occurring after the first point in time;electronically sending the second snapshot of the volume through the network to the backup device for storage on the backup device; andsending a first object comprising metadata of differences between the first and second snapshots to the backup device for storage on the backup device, wherein the metadata of differences between the first and second snapshots comprises metadata including locations different between the first and second snapshots of the volume;sending a third snapshot of the volume to the backup device;sending a second object comprising metadata of differences between the second and third snapshots to the backup device;upon receiving notification indicating that a second snapshot of the volume is erased from the backup device, determining whether the second snapshot is the oldest snapshot;if the second snapshot is not the oldest snapshot, merging the first object comprising the metadata of differences between the first and second snapshots with the second object comprising the metadata of differences between the second and third snapshots;if the second snapshot is the oldest, deleting the second object that comprises the metadata of the differences between the second and third snapshots; andrecording write transactions for the production site via a DO metadata stream and an UNDO metadata stream, the DO metadata stream storing date and time of transaction, a write size, a beginning address in a logical unit for writing new data, and a pointer to an offset in a stream where the new data is located, the UNDO metadata stream storing a date and time of transaction, a write size of an existing transaction, and a beginning address in the logical unit in which data of the existing transaction is to be overwritten, and a pointer to the offset in an UNDO stream where corresponding data of the existing transaction is located;wherein upon determining the second snapshot is not the oldest, the first object and the second object are merged from corresponding metadata accessed from the DO metadata stream;wherein upon determining the second snapshot is not the oldest, the second snapshot is deleted from corresponding metadata accessed from the UNDO metadata stream.
  • 2. The method of claim 1, further comprising: receiving notification a first snapshot of the volume is erased from the backup device;deleting the first object comprising the metadata of differences between the first and second snapshots if the first snapshot erased is the oldest snapshot of the volume.
  • 3. The method of claim 1, further comprising: receiving notification to restore a snapshot of the volume;merging metadata of differences between a requested snapshot and a latest snapshot;sending the merged metadata of differences to the production site; andsending data corresponding to the differences from the replication site to the production site.
  • 4. The method of claim 3, wherein merging the metadata of the differences comprises merging the metadata of the differences to a unified differences list or a bitmap.
  • 5. The method of claim 1, wherein sending the first snapshot of the volume at the production site to the backup device at the replication site comprises sending the first snapshot of the volume at the production site to a backup device in a cloud networking environment.
  • 6. The method of claim 1, wherein the first object is sent to the replication site prior to sending the third object to the replication site.
  • 7. The method of claim 1, wherein the storage array communicates with the replication site over the network via a data protection appliance.
  • 8. An apparatus, comprising: electronic hardware circuitry configured to: take, at a first point in time, a first snapshot of a volume on a storage array, the storage array located at a production site;electronically send the first snapshot of the volume through a network to a backup device at a replication site for storage on the backup device;take, by the production site at a second point in time, a second snapshot of the volume, the second point-in time occurring after the first point in time;electronically send the second snapshot of the volume through the network to the backup device for storage on the backup device;send a first object comprising metadata of differences between the first and second snapshots to the backup device for storage on the backup device, wherein the metadata of differences between the first and second snapshots comprises metadata including locations different between the first and second snapshots of the volume;send a third snapshot of the volume to the backup device;send a second object comprising metadata of differences between the second and third snapshots to the backup device;upon receipt of a notification indicating that a second snapshot of the volume is erased from the backup device, determine whether the second snapshot is the oldest snapshot; andif the second snapshot is not the oldest snapshot, merge the first object comprising the metadata of differences between the first and second snapshots with the second object comprising the metadata of differences between the second and third snapshots;if the second snapshot is the oldest, delete the second object that comprises the metadata of the differences between the second and third snapshots;recording write transactions for the production site via a DO metadata stream and an UNDO metadata stream, the DO metadata stream storing date and time of transaction, a write size, a beginning address in a logical unit for writing new data, and a pointer to an offset in a stream where the new data is located, the UNDO metadata stream storing a date and time of transaction, a write size of an existing transaction, and a beginning address in the logical unit in which data of the existing transaction is to be overwritten, and a pointer to the offset in an UNDO stream where corresponding data of the existing transaction is located;wherein upon determining the second snapshot is not the oldest, the first object and the second object are merged from corresponding metadata accessed from the DO metadata stream;wherein upon determining the second snapshot is not the oldest, the second snapshot is deleted from corresponding metadata accessed from the UNDO metadata stream.
  • 9. The apparatus of claim 8, wherein the circuitry comprises at least one of a processor, a memory, a programmable logic device or a logic gate.
  • 10. The apparatus of claim 8, further comprising circuitry configured to: receive notification a first snapshot of the volume is erased from the backup device;delete the first object comprising the metadata of differences between the first and second snapshots if the first snapshot erased is the oldest snapshot of the volume.
  • 11. The apparatus of claim 8, further comprising circuitry configured to: receive notification to restore a snapshot of the volume;merge metadata of differences between a requested snapshot and a latest snapshot;send the merged metadata of differences to the production site; andsend data corresponding to the differences from the replication site to the production site.
  • 12. The apparatus of claim 11, wherein merging the metadata of the differences comprises merging the metadata of the differences to a unified differences list or a bitmap.
  • 13. The apparatus of claim 8, wherein the circuitry configured to send the first snapshot of the volume at the production site to the backup device at the replication site comprises circuitry configured to send the first snapshot of the volume at the production site to a backup device in a cloud networking environment.
  • 14. The apparatus of claim 8, wherein the first object is sent to the replication site prior to sending the third object to the replication site.
  • 15. The apparatus of claim 8, wherein the storage array communicates with the replication site over the network via a data protection appliance.
  • 16. An article comprising: a non-transitory computer-readable medium that stores computer-executable instructions, the instructions causing a machine to: take, at a first point in time, a first snapshot of a volume on a storage array, the storage array located at a production site;electronically send the first snapshot of the volume through a network to a backup device at a replication site for storage on the backup device;take, by the production site at a second point in time, a second snapshot of the volume, the second point-in time occurring after the first point in time;electronically send the second snapshot of the volume through the network to the backup device for storage on the backup device;send a first object comprising metadata of differences between the first and second snapshots to the backup device for storage on the backup device, wherein the metadata of differences between the first and second snapshots comprises metadata including locations different between the first and second snapshots of the volume;send a third snapshot of the volume to the backup device;send a second object comprising metadata of differences between the second and third snapshots to the backup device;upon receipt of a notification indicating that a second snapshot of the volume is erased from the backup device, determine whether the second snapshot is the oldest snapshot;if the second snapshot is not the oldest snapshot, merge the first object comprising the metadata of differences between the first and second snapshots with the second object comprising the metadata of differences between the second and third snapshots; andif the second snapshot is the oldest, delete the second object that comprises the metadata of the differences between the second and third snapshots; andrecording write transactions for the production site via a DO metadata stream and an UNDO metadata stream, the DO metadata stream storing date and time of transaction, a write size, a beginning address in a logical unit for writing new data, and a pointer to an offset in a stream where the new data is located, the UNDO metadata stream storing a date and time of transaction, a write size of an existing transaction, and a beginning address in the logical unit in which data of the existing transaction is to be overwritten, and a pointer to the offset in an UNDO stream where corresponding data of the existing transaction is located;wherein upon determining the second snapshot is not the oldest, the first object and the second object are merged from corresponding metadata accessed from the DO metadata stream;wherein upon determining the second snapshot is not the oldest, the second snapshot is deleted from corresponding metadata accessed from the UNDO metadata stream.
  • 17. The article of claim 16, further comprising instructions causing the machine to: receive notification a first snapshot of the volume is erased from the backup device;delete the first object comprising metadata of differences between the first and second snapshots if the first snapshot erased is the oldest snapshot of the volume.
  • 18. The article of claim 16, further comprising instructions causing the machine to: receive notification to restore a snapshot of the volume;merge metadata of differences between a requested snapshot and a latest snapshot;send the merged metadata of differences to the production site; andsend data corresponding to the differences from the replication site to the production site.
  • 19. The article of claim 16, wherein the instructions causing the machine to send the first snapshot of the volume at the production site to the backup device at the replication site comprises instructions causing the machine to send the first snapshot of the volume at the production site to a backup device in a cloud networking environment.
  • 20. The article of claim 16, wherein the first object is sent to the replication site prior to sending the third object to the replication site.
US Referenced Citations (377)
Number Name Date Kind
5170480 Mohan et al. Dec 1992 A
5249053 Jain Sep 1993 A
5388254 Betz et al. Feb 1995 A
5499367 Bamford et al. Mar 1996 A
5526397 Lohman Jun 1996 A
5864837 Maimone Jan 1999 A
5990899 Whitten Jan 1999 A
5879459 Gadgil et al. Mar 1999 A
6042652 Hyun et al. Mar 2000 A
6065018 Beier et al. May 2000 A
6143659 Leem Nov 2000 A
6148340 Bittinger et al. Nov 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6203613 Gates et al. Mar 2001 B1
6260125 McDowell Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6272534 Guha Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6467023 DeKoning et al. Oct 2002 B1
6574657 Dickinson Jun 2003 B1
6621493 Whitten Sep 2003 B1
6804676 Bains, II Oct 2004 B1
6947981 Lubbers et al. Sep 2005 B2
7043610 Horn et al. May 2006 B2
7051126 Franklin May 2006 B1
7076620 Takeda et al. Jul 2006 B2
7111197 Kingsbury et al. Sep 2006 B2
7117327 Hlrakawa et al. Oct 2006 B2
7120768 Mizuno et al. Oct 2006 B2
7130975 Suishu et al. Oct 2006 B2
7139927 Park et al. Nov 2006 B2
7159088 Hirakawa et al. Jan 2007 B2
7167963 Hirakawa et al. Jan 2007 B2
7203741 Marco et al. Apr 2007 B2
7222136 Brown et al. May 2007 B1
7296008 Passerini et al. Nov 2007 B2
7328373 Kawamura et al. Feb 2008 B2
7353335 Kawamura Apr 2008 B2
7360113 Anderson et al. Apr 2008 B2
7426618 Vu et al. Sep 2008 B2
7516287 Ahal et al. Apr 2009 B2
7519625 Honami et al. Apr 2009 B2
7519628 Leverett Apr 2009 B1
7546485 Cochran et al. Jun 2009 B2
7577867 Lewin et al. Aug 2009 B2
7590887 Kano Sep 2009 B2
7606940 Yamagami Oct 2009 B2
7627612 Ahal et al. Dec 2009 B2
7627687 Ahal et al. Dec 2009 B2
7719443 Natanzon May 2010 B1
7757057 Sangapu et al. Jul 2010 B2
7774565 Lewin et al. Aug 2010 B2
7797358 Ahal et al. Sep 2010 B1
7840536 Ahal et al. Nov 2010 B1
7840662 Natenzon Nov 2010 B1
7844856 Ahal et al. Nov 2010 B1
7660836 Natanzon et al. Dec 2010 B2
7849361 Ahal et al. Dec 2010 B2
7882286 Natanzon et al. Feb 2011 B1
7934262 Natanzon et al. Apr 2011 B1
7958372 Natanzon Jun 2011 B1
8037162 Marco et al. Oct 2011 B2
8041940 Natanzon et al. Oct 2011 B1
8060713 Natanzon Nov 2011 B1
8060714 Natanzon Nov 2011 B1
8095756 Somavarapu Jan 2012 B1
8103937 Natanzon et al. Jan 2012 B1
8108634 Natanzon et al. Jan 2012 B1
8205009 Hellen et al. Jun 2012 B2
8214612 Natanzon Jul 2012 B1
8250149 Marco et al. Aug 2012 B2
8271441 Notanzon et al. Sep 2012 B1
8271447 Natanzon et al. Sep 2012 B1
8332687 Natanzon et al. Dec 2012 B1
8335761 Natanzon Dec 2012 B1
8335771 Natanzon et al. Dec 2012 B1
8341115 Natanzon et al. Dec 2012 B1
8370648 Natanzon Feb 2013 B1
8380885 Natanzon Feb 2013 B1
8392680 Natanzon et al. Mar 2013 B1
8429362 Natanzon et al. Apr 2013 B1
8433869 Natenzon et al. Apr 2013 B1
8438135 Natanzon et al. May 2013 B1
8464101 Natanzon et al. Jun 2013 B1
8478955 Natanzon et al. Jul 2013 B1
8495304 Natanzon et al. Jul 2013 B1
8510279 Natanzon et al. Aug 2013 B1
8521691 Natanzon Aug 2013 B1
8521694 Natanzon Aug 2013 B1
8543609 Natanzon Sep 2013 B1
8583885 Natanzon Nov 2013 B1
8589350 Lalonde et al. Nov 2013 B1
8600945 Natanzon et al. Dec 2013 B1
8601085 Ives et al. Dec 2013 B1
8627012 Derbeko et al. Jan 2014 B1
8676763 Goodman et al. Mar 2014 B2
8683592 Dotan et al. Mar 2014 B1
8694700 Natanzon et al. Apr 2014 B1
8706700 Natanzon et al. Apr 2014 B1
8712962 Natanzon et al. Apr 2014 B1
8719497 Don et al. May 2014 B1
8725691 Natanzon May 2014 B1
8725692 Natanzon et al. May 2014 B1
8726066 Natanzon et al. May 2014 B1
8738813 Natanzon et al. May 2014 B1
8751828 Raizen et al. Jun 2014 B1
8769336 Natanzon et al. Jul 2014 B1
8745004 Natanzon et al. Aug 2014 B1
8805786 Natanzon Aug 2014 B1
8806161 Natanzon Aug 2014 B1
8825848 Dotan et al. Sep 2014 B1
8832399 Natanzon et al. Sep 2014 B1
8850143 Natanzon Sep 2014 B1
8850144 Natanzon et al. Sep 2014 B1
8862546 Natanzon et al. Oct 2014 B1
8892835 Natanzon et al. Nov 2014 B1
8898112 Natanzon et al. Nov 2014 B1
8898409 Natanzon et al. Nov 2014 B1
8898515 Natanzon Nov 2014 B1
8898519 Natanzon et al. Nov 2014 B1
8914595 Natanzon Dec 2014 B1
8924668 Natanzon Dec 2014 B1
8930500 Marco et al. Jan 2015 B2
8930947 Derbeko et al. Jan 2015 B1
8977593 Natanzon et al. Mar 2015 B1
8977826 Meiri et al. Mar 2015 B1
8996460 Frank et al. Mar 2015 B1
8996461 Natanzon et al. Mar 2015 B1
8996827 Natanzon Mar 2015 B1
9003138 Natanzon et al. Apr 2015 B1
9026696 Natanzon et al. May 2015 B1
9031913 Natanzon May 2015 B1
9032160 Natanzon et al. May 2015 B1
9037818 Natanzon et al. May 2015 B1
9063994 Natanzon et al. Jun 2015 B1
9069479 Natanzon Jun 2015 B1
9069709 Natanzon et al. Jun 2015 B1
9075810 Banerjee Jul 2015 B2
9081754 Natanzon et al. Jul 2015 B1
9081842 Natanzon et al. Jul 2015 B1
9087008 Natanzon Jul 2015 B1
9087112 Natanzon et al. Jul 2015 B1
9104529 Derbeko et al. Aug 2015 B1
9110914 Frank et al. Aug 2015 B1
9116811 Derbeko et al. Aug 2015 B1
9128628 Natanzon et al. Sep 2015 B1
9128855 Natanzon et al. Sep 2015 B1
9134914 Derbeko et al. Sep 2015 B1
9135119 Natanzon et al. Sep 2015 B1
9135120 Natanzon Sep 2015 B1
9146878 Cohen et al. Sep 2015 B1
9152339 Cohen et al. Oct 2015 B1
9152578 Saad et al. Oct 2015 B1
9152814 Natanzon Oct 2015 B1
9158578 Derbeko et al. Oct 2015 B1
9158630 Natanzon Oct 2015 B1
9160526 Raizen et al. Oct 2015 B1
9177670 Derbeko et al. Nov 2015 B1
9189339 Cohen et al. Nov 2015 B1
9189341 Natanzon et al. Nov 2015 B1
9201736 Moore et al. Dec 2015 B1
9223659 Natanzon et al. Dec 2015 B1
9225529 Natanzon et al. Dec 2015 B1
9235481 Natanzon et al. Jan 2016 B1
9235524 Derbeko et al. Jan 2016 B1
9235632 Natanzon Jan 2016 B1
9244997 Natanzon et al. Jan 2016 B1
9256605 Natanzon Feb 2016 B1
9274718 Natanzon et al. Mar 2016 B1
9275063 Natanzon Mar 2016 B1
9286052 Solan et al. Mar 2016 B1
9305009 Bono et al. Apr 2016 B1
9323750 Natanzon et al. Apr 2016 B2
9330155 Bono et al. May 2016 B1
9336094 Wolfson et al. May 2016 B1
9336230 Natanzon May 2016 B1
9367260 Natanzon Jun 2016 B1
9378096 Erel et al. Jun 2016 B1
9378219 Bono et al. Jun 2016 B1
9378261 Bono et al. Jun 2016 B1
9383937 Frank et al. Jul 2016 B1
9389800 Natanzon et al. Jul 2016 B1
9405481 Cohen et al. Aug 2016 B1
9405684 Derbeko et al. Aug 2016 B1
9405765 Natanzon Aug 2016 B1
9411535 Shemer et al. Aug 2016 B1
9459804 Natanzon et al. Oct 2016 B1
9460028 Raizen et al. Oct 2016 B1
9471579 Natanzon Oct 2016 B1
9477407 Marshak et al. Oct 2016 B1
9501542 Natanzon Nov 2016 B1
9507732 Natanzon et al. Nov 2016 B1
9507845 Natanzon et al. Nov 2016 B1
9514138 Natanzon et al. Dec 2016 B1
9524218 Veprinsky et al. Dec 2016 B1
9529885 Natanzon et al. Dec 2016 B1
9535800 Natanzon et al. Jan 2017 B1
9535801 Natanzon et al. Jan 2017 B1
9547459 BenHanokh et al. Jan 2017 B1
9547591 Natanzon et al. Jan 2017 B1
9552405 Moore et al. Jan 2017 B1
9557921 Cohen et al. Jan 2017 B1
9557925 Natanzon Jan 2017 B1
9563517 Natanzon et al. Feb 2017 B1
9563684 Natanzon et al. Feb 2017 B1
9575851 Natanzon et al. Feb 2017 B1
9575857 Natanzon Feb 2017 B1
9575894 Natanzon et al. Feb 2017 B1
9582382 Natanzon et al. Feb 2017 B1
9588703 Natanzon et al. Mar 2017 B1
9588847 Natanzon et al. Mar 2017 B1
9594822 Natanzon et al. Mar 2017 B1
9600377 Cohen et al. Mar 2017 B1
9619255 Natanzon Apr 2017 B1
9619256 Natanzon et al. Apr 2017 B1
9619264 Natanzon et al. Apr 2017 B1
9619543 Natanzon et al. Apr 2017 B1
9632881 Natanzon Apr 2017 B1
9639295 Natanzon et al. May 2017 B1
9639383 Natanzon May 2017 B1
9639592 Natanzon et al. May 2017 B1
9652333 Bournival et al. May 2017 B1
9658929 Natanzon et al. May 2017 B1
9659074 Natanzon et al. May 2017 B1
9665305 Natanzon et al. May 2017 B1
9668704 Fuimaono et al. Jun 2017 B2
9672117 Natanzon et al. Jun 2017 B1
9678680 Natanzon et al. Jun 2017 B1
9678728 Shemer et al. Jun 2017 B1
9684576 Natanzon et al. Jun 2017 B1
9690504 Natanzon et al. Jun 2017 B1
9696939 Frank et al. Jul 2017 B1
9710177 Natanzon Jul 2017 B1
9720618 Panidis et al. Aug 2017 B1
9722788 Natanzon et al. Aug 2017 B1
9727429 Moore et al. Aug 2017 B1
9733969 Derbeko et al. Aug 2017 B2
9737111 Lustik Aug 2017 B2
9740572 Natanzon et al. Aug 2017 B1
9740573 Natanzon Aug 2017 B1
9740880 Natanzon et al. Aug 2017 B1
9749300 Cale et al. Aug 2017 B1
9772789 Natanzon et al. Sep 2017 B1
9798472 Natanzon et al. Oct 2017 B1
9798490 Natanzon Oct 2017 B1
9804934 Natanzon et al. Oct 2017 B1
9811431 Natanzon et al. Nov 2017 B1
9823865 Natanzon et al. Nov 2017 B1
9823973 Natanzon Nov 2017 B1
9832261 Don et al. Nov 2017 B2
9846698 Panidis et al. Dec 2017 B1
9875042 Natanzon et al. Jan 2018 B1
9875162 Panidis et al. Jan 2018 B1
9880777 Bono et al. Jan 2018 B1
9881014 Bono et al. Jan 2018 B1
9910620 Veprinsky et al. Mar 2018 B1
9910621 Golan et al. Mar 2018 B1
9910735 Natanzon Mar 2018 B1
9910739 Natanzon et al. Mar 2018 B1
9917854 Natanzon et al. Mar 2018 B2
9921955 Derbeko et al. Mar 2018 B1
9933957 Cohen et al. Apr 2018 B1
9934302 Cohen et al. Apr 2018 B1
9940205 Natanzon Apr 2018 B2
9940460 Derbeko et al. Apr 2018 B1
9946649 Natanzon et al. Apr 2018 B1
9959061 Natanzon et al. May 2018 B1
9965306 Natanzon et al. May 2018 B1
9990256 Natanzon Jun 2018 B1
9996539 Natanzon Jun 2018 B1
10007626 Saad et al. Jun 2018 B1
10019194 Baruch et al. Jul 2018 B1
10025931 Natanzon et al. Jul 2018 B1
10031675 Veprinsky et al. Jul 2018 B1
10031690 Panidis et al. Jul 2018 B1
10031692 Elron et al. Jul 2018 B2
10031703 Natanzon et al. Jul 2018 B1
10037251 Bono et al. Jul 2018 B1
10042579 Natanzon Aug 2018 B1
10042751 Veprinsky et al. Aug 2018 B1
10055146 Natanzon et al. Aug 2018 B1
10055148 Natanzon et al. Aug 2018 B1
10061666 Natanzon et al. Aug 2018 B1
10067694 Natanzon et al. Sep 2018 B1
10067837 Natanzon et al. Sep 2018 B1
10078459 Natanzon et al. Sep 2018 B1
10082980 Cohen et al. Sep 2018 B1
10083093 Natanzon et al. Sep 2018 B1
10095489 Lieberman et al. Oct 2018 B1
10101943 Ayzenberg et al. Oct 2018 B1
10108356 Natanzon et al. Oct 2018 B1
10108507 Natanzon Oct 2018 B1
10108645 Bigman et al. Oct 2018 B1
10114581 Natanzon et al. Oct 2018 B1
10120787 Shemer et al. Nov 2018 B1
10120925 Natanzon et al. Nov 2018 B1
10126946 Natanzon et al. Nov 2018 B1
10133874 Natanzon et al. Nov 2018 B1
10140039 Baruch et al. Nov 2018 B1
10146436 Natanzon et al. Dec 2018 B1
10146639 Natanzon et al. Dec 2018 B1
10146675 Shemer et al. Dec 2018 B1
10146961 Baruch et al. Dec 2018 B1
10148751 Natanzon Dec 2018 B1
10152246 Lieberman et al. Dec 2018 B1
10152267 Ayzenberg et al. Dec 2018 B1
10152384 Amit et al. Dec 2018 B1
10157014 Panidis et al. Dec 2018 B1
10185583 Natanzon et al. Jan 2019 B1
10191677 Natanzon et al. Jan 2019 B1
10191687 Baruch et al. Jan 2019 B1
10191755 Natanzon et al. Jan 2019 B1
10203904 Natanzon et al. Feb 2019 B1
10210073 Baruch et al. Feb 2019 B1
10223007 Natanzon et al. Mar 2019 B1
10223023 Natanzon et al. Mar 2019 B1
10223131 Lieberman et al. Mar 2019 B1
10229006 Natanzon et al. Mar 2019 B1
10229056 Panidis et al. Mar 2019 B1
10235055 Saad et al. Mar 2019 B1
10235060 Baruch et al. Mar 2019 B1
10235061 Natanzon et al. Mar 2019 B1
10235064 Natanzon et al. Mar 2019 B1
10235087 Baruch et al. Mar 2019 B1
10235088 Baruch et al. Mar 2019 B1
10235090 Baruch et al. Mar 2019 B1
10235091 Ayzenberg et al. Mar 2019 B1
10235092 Natanzon et al. Mar 2019 B1
10235145 Natanzon et al. Mar 2019 B1
10235196 Natanzon et al. Mar 2019 B1
10235247 Natanzon et al. Mar 2019 B1
10235249 Natanzon et al. Mar 2019 B1
10235252 Lieberman et al. Mar 2019 B1
10250679 Natanzon et al. Apr 2019 B1
10255137 Panidis et al. Apr 2019 B1
10255291 Natanzon et al. Apr 2019 B1
20020129168 Kanai et al. Sep 2002 A1
20030048842 Fourquin et al. Mar 2003 A1
20030061537 Cha et al. Mar 2003 A1
20030110278 Anderson Jun 2003 A1
20030131278 Fujibayashi Jul 2003 A1
20030145317 Chamberlain Jul 2003 A1
20030196147 Hirata et al. Oct 2003 A1
20040205092 Longo et al. Oct 2004 A1
20040250032 Ji et al. Dec 2004 A1
20040254964 Kodama et al. Dec 2004 A1
20050015663 Armangau Jan 2005 A1
20050028022 Arnano Feb 2005 A1
20050049924 DeBettencourt et al. Mar 2005 A1
20050172092 Lam et al. Aug 2005 A1
20050273655 Chow et al. Dec 2005 A1
20060031647 Hirakawa et al. Feb 2006 A1
20060047996 Anderson et al. Mar 2006 A1
20060064416 Sim-Tang Mar 2006 A1
20060107007 Hirakawa et al. May 2006 A1
20060117211 Matsunami et al. Jun 2006 A1
20060161810 Bao Jul 2006 A1
20060179343 Kitamura Aug 2006 A1
20060195670 Iwamura et al. Aug 2006 A1
20060212462 Hellen et al. Sep 2006 A1
20070055833 Vu et al. Mar 2007 A1
20070094467 Yamasaki Apr 2007 A1
20070162513 Lewin et al. Jul 2007 A1
20070180304 Kano Aug 2007 A1
20070198602 Ngo et al. Aug 2007 A1
20070198791 Iwamura et al. Aug 2007 A1
20070220311 Lewin et al. Sep 2007 A1
20070245105 Suzuki Oct 2007 A1
20070266053 Ahal et al. Nov 2007 A1
20080082591 Ahal et al. Apr 2008 A1
20080082592 Ahal et al. Apr 2008 A1
20080082770 Ahal et al. Apr 2008 A1
20100082553 Beatty Apr 2010 A1
20130304788 DeLuca et al. Nov 2013 A1
20140089264 Talagala Mar 2014 A1
20150134879 Zheng May 2015 A1
Foreign Referenced Citations (2)
Number Date Country
1154356 Nov 2001 EP
WO 00 45581 Aug 2000 WO
Non-Patent Literature Citations (54)
Entry
U.S. Non-Final Office Action dated Aug. 25, 2016 corresponding to U.S. Appl. No. 14/559,031; 35 Pages.
Notice of Allowance dated Jun. 22, 2016 corresponding to U.S. Appl. No. 14/572,899; 7 Pages.
Gibson, “Five Point Plan Lies at the Heart of Compression Technology;” Apr. 29, 1991; p., 1.
Soules, “Metadata Efficiency in Versioning File Systems;” 2003; pp. 1-16.
AIX System Management Concepts: Operating Systems and Devices: May 2000: pp. 1-280.
Soules et al.; “Metadata Efficiency in a Comprehensive Versioning File System;” May 2002; CMU-CS-02-145; School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; 33 pages.
Linux Filesystems; Sams Publishing; 2002; pp. 17-22 and 67-71.
Bunyan, “Muitiplexing in a BrightStor® ARCserve® Backup Release 11;” Mar. 2004; pp. 1-4.
Marks, “Network Computing?” Feb. 2, 2006; pp. 1-8.
Hill, “Network Computing;” Jun. 8, 2006; pp. 1-9.
Microsoft Computer Dictionary; 2002; Press Fifth Edition; 2 pages.
Retrieved from http://en.wikipedia.org/wiki/DEFLATE: Deflate; Jun. 19, 2008; pp. 1-6.
Retrieved from http://en.wikipedia.org/wiki/Huffman_coding; Huffman Coding; Jun. 8, 2008; pp. 1-11.
Retrieved from http:///en.wikipedia.org/wiki/LZ77; LZ77 and LZ78; Jun. 17, 2008; pp. 1-2.
Saar Cohen, et al.; “Replicating Using Volume Multipiexing,” U.S. Appl. No. 14/572,899, filed Dec. 17, 2014 51 pages.
Saar Cohen, et al.; “Providing Data Protection Using Point-In-Time Images From Multiple Types of Storage Devices,” U.S. Appl. No. 14/559,031, filed Dec. 3, 2014 51 pages.
Image File Wrapper from U.S. Appl. No. 11/609,560 downloaded Jan. 7, 2015 265 pages.
Image File Wrapper from U.S. Appl. No. 12/057,652 downloaded Jan. 7, 2015 296 pages.
Image File Wrapper from U.S. Appl. No. 11/609,561 downloaded Jan. 7, 2015 219 pages.
Image File Wrapper from U.S. Appl. No. 11/356,920 downloaded Jan. 7, 2015 272 pages.
Image File Wrapper from U.S. Appl. No. 10/512,687 downloaded Jan. 7, 2015 Part 1 of 2; 300 pages.
Image File Wrapper from U.S. Appl. No. 10/612,687 downloaded Jan. 7, 2015 Part 2 of 2; 254 pages.
Image File Wrapper from U.S. Appl. No. 11/536,233 downloaded Jan. 7, 2015 256 pages.
Image File Wrapper from U.S. Appl. No. 11/536,215 downloaded Jan. 7, 2015 172 pages.
Image File Wrapper from U.S. Appl. No. 11/535,160 downloaded Jan. 7, 2015 230 pages.
Image File Wrapper from U.S. Appl. No. 11/964,168 downloaded Jan. 7, 2015 222 pages.
Image File Wrapper from U.S. Appl. No. 14/572,899 downloaded Jan. 12, 2015 135 pages.
Image File Wrapper from U.S. Appl. No. 14/559,031 downloaded Jan. 12, 2015 122 pages.
U.S. Office Action dated Apr. 4, 2016 corresponding to U.S. Appl. No. 14/572,899; 18 Pages.
Response to Office Action dated Apr. 4, 2016 corresponding to U.S. Appl. No. 14/572,899; Response filed Jun. 6, 2016; 10 Pages.
Response to U.S. Office Action dated Aug. 25, 2016 corresponding to U.S. Appl. No. 14/559,031; Response filed Nov. 21, 2016; 15 Pages.
Notice of Allowance dated Dec. 16, 2016 corresponding to U.S. Appl. No. 14/559,031; 11 Pages.
U.S. Appl. No. 14/496,783, filed Sep. 25, 2014, Natanzon et al.
U.S. Appl. No. 14/496,790, filed Sep. 25, 2014, Cohen et al.
U.S. Appl. No. 14/559,036, filed Dec. 3, 2014, Natanzon et al.
U.S. Appl. No. 14/753,389, filed Jun. 29, 2015, Nir et al.
U.S. Appl. No. 14/976,719, filed Dec. 21, 2015, Natanzon.
U.S. Appl. No. 14/978,378, filed Dec. 22, 2015, Bigman et al.
U.S. Appl. No. 15/085,148, filed Mar. 30, 2016, Baruch et al.
U.S. Appl. No. 15/274,362, filed Sep. 23, 2016, Baruch et al.
U.S. Appl. No. 15/275,768, filed Sep. 26, 2016, Natanzon et al.
U.S. Appl. No. 15/275,756, filed Sep. 26, 2016, Natanzon et al.
U.S. Appl. No. 15/379,940, filed Dec. 15, 2016, Baruch et al.
U.S. Appl. No. 15/386,754, filed Dec. 21, 2016, Shemer et al.
U.S. Appl. No. 15/380,013, filed Dec. 15, 2016, Baruch et al.
U.S. Appl. No. 15/390,996, filed Dec. 27, 2016, Natanzon et al.
U.S. Appl. No. 15/391,030, filed Dec. 27, 2016, Shemer et al.
U.S. Appl. No. 15/970,243, filed May 3, 2018, Schneider et al.
U.S. Appl. No. 16/052,037, filed Aug. 1, 2018, Schneider et al.
U.S. Appl. No. 16/048,763, filed Jul. 30, 2018, Schneider et al.
U.S. Appl. No. 16/050,400, filed Jul. 31, 2018, Alkalay et al.
U.S. Appl. No. 16/179,295, filed Nov. 2, 2018, Natanzon et al.
U.S. Appl. No. 16/368,008, filed Mar. 28, 2019, Natanzon et al.
U.S. Appl. No. 16/261,174, filed Jan. 29, 2019, Natanzon et al.