Not applicable
Not applicable
Not applicable
1. Field of the Invention
This invention relates generally to protective window and portal coverings for use during hurricanes and high windstorms and more particularly to a uniquely configured transparent or translucent polycarbonate storm shutter which affords enhanced strength and impact resistance during heavy rains and windstorm conditions, particularly during hurricanes.
2. Description of Related Art
Hurricanes, heavy windstorms and tornado activity can produce winds easily capable of heavy property destruction. Windows and door openings may easily be shattered or destroyed which then leads to more severe wind damage due to the wind entering into the building structure and producing great interior pressure gradients against inside window and door surfaces as well as uplifting of the roofing structure which will rapidly to total building destruction. Therefore, initially protecting damage to these windows and portals during such severe storms may mean the difference between saving the entire building and a total loss of such buildings.
One well known method or technique for preventing window and door damage is to temporarily barricade them over with plywood material. However, the plywood should be removed promptly after storm conditions subside because the interior of the building is left completely light-blocked. Moreover, plywood is extremely heavy and difficult to deal with and the deployment and removal typically becomes a major task best left to a contractor.
U.S. Pat. No. 4,333,271 to DePaolo, et al. discloses a metal panel for door and window openings and Kostrzecha teaches a corrugated panel constructed from shatter-resistant and transparent plastic material in U.S. Pat. No. 5,457,921.
A method for adhering a flexible sheet to a polycarbonate sheet is taught by Sofie, et al. in U.S. Pat. No. 5,851,637. A storm panel formed of a film material in the form of two laminated sheets is taught by Motro in published U.S. Application 2003/0159372.
A penetration resistant window including a penetration layer sandwiched between transparent sheets is disclosed in U.S. Pat. No. 6,675,550 to Dlubak. Lewkowitz discloses an impact resistant glass and plastic pane attached to a flexible plastic sheet in U.S. Pat. No. 6,71,245 and Madden teaches a light transmitting storm shutter of corrugated aluminum and clear polycarbonate panels in U.S. Pat. No. 6,868,642.
A segmented storm shutter is taught in U.S. Pat. No. 5,345,716 to Caplan and Shaver discloses a partially transparent storm shutter of polycarbonate plastic sheet material in U.S. Pat. No. 6,079,168. Wade discloses plastic sheets have corrugated regions mounted on tracks in U.S. Pat. No. 6,974,622.
Reusable hurricane window film protection is taught in U.S. Pat. No. 6,705,054 to Pelton and Schoenberg discloses three-layered thermoplastic storm window film in U.S. Pat. No. 4,590,124.
The present invention provides a uniquely configured polycarbonate storm shutter which is easily deployable due to the light weight nature of the transparent or translucent panels and which affords by the nature of the corrugation, enhanced resistance to storm, wind and blown object impact. The preferred embodiment of the invention also includes an additional protective film attached thereto for added strength and may further or alternately include a sputter coated transparent metal or ceramic surface which greatly reduces ultraviolet and solar energy conveyance when the shutters are left in place for longer periods than simply the time period of a single hurricane or storm.
This invention is directed to a transparent or translucent storm shutter for protectively covering a building portal, window and the like from hurricane and storm damage. A corrugated light transmitting polycarbonate panel is formed having continuous adjacent corrugation extending therealong. Each of the corrugations preferably has radiused side margins and a generally flattened or raised central portion offset from a neutral place of the panel. A central one of the corrugations extending along or adjacent to a centerline of the panel, preferably has a depth in a range of at least 10% greater than that of the edge corrugation of the panel, the central corrugations also preferably have a width in a range of at least 4% less than that of the edge corrugation wherein impact and wind resistance of the panel are enhanced. Protective transparent impact resistant film bonded to one panel surface preferably adds impact strength to the panel while sputter coating one panel surface with a transparent metallic or ceramic material enhances solar and UV rejection.
It is therefore an object of this invention to provide a translucent or transparent storm shutter for protectively covering building portals, windows and the like from hurricane and storm damage protection.
Yet another object of this invention is to provide a storm shutter for protecting a building from window or door damage which is formed of polycarbonate sheet material having a unique configuration for added impact resistance strength.
Yet another object of this invention is to provide a storm shutter having a uniquely configured corrugation structure and which may include a transparent hurricane-type film attached thereto for added strength.
Still another object of this invention is to provide a storm shutter formed of corrugated polycarbonate sheet material which may include a sputter coated ceramic or metallic surface layer for added solar and UV energy rejection when the panels are left onto the building while still allowing light to enter there into.
In accordance with these and other objects which will become apparent hereinafter, the instant invention will now be described with reference to the accompanying drawings.
Referring now to the drawings, one embodiment of the invention is there shown generally at numeral 10 in
The height of edge corrugations 14 is established at 1.00″ from the neutral plane B to a lateral portion 21 as are corrugations 16, while the corrugations 18 have a height or depth of 1.08″, corrugations 20 having a height from the neutral plane B of 1.12″ as does the central corrugation 22. These numerical results of corrugation height from the neutral plane and overall width with percentage comparisons are set forth in Table 1 herebelow.
By this arrangement, the central corrugation 22, by virtue of its greatest depth of 1.10 from the neutral plane B and the greatest width, 2.750, affords the greatest resistance to impact against the panel 12, that strength ratio gradually decreasing to the edge corrugations 14. Further, the configuration of each of the corrugations affords added strength in that the central segment of each is flattened over a substantial width thereof which positions that material portion of the panel at the greatest distance from the neutral plane B for maximized strength.
To further enhance the strength characteristics of these panels 12, it is preferred that a layer of transparent impact resistant film 24 be adhered to one of the surfaces of the panel 12. These protective adhesively attached films are of uniform thickness and are well known in this industry. Such films are described in the prior art contained hereinabove. Because the surfaces of the polycarbonate panels 12 are not polished and free of manufacturing defects, it is preferred that they be treated with a plasma open air coating such as that as provided by PLASMATREAT of North America, Inc. located in Missagaua, Ontario, Canada under the trade name FLUME Plasma Systems This plasma system utilizes compressed air and power to generate atmospheric pressure plasma which is blasted onto the surface of the polycarbonate sheet 12 to prepare it for bonding application of the impact resistant film.
Referring lastly to
Because the polycarbonate panels 12 of this invention are transparent or translucent, the light transmitability is greatly enhanced over that of solid or opaque plywood. Therefore, leaving these protective panels in place during an entire hurricane season, for example, is not only feasible, but is highly practical. However, to reduce the amount of UV and solar radiation entering into the building through the protected window or portal, an additional coating of metal or ceramic material 26 deposited by the utilization of sputter coating techniques of one of the surfaces of these panels 12 is also preferred. The use of sputter coating for these plastic or polycarbonate panels 12 is also described in the Background hereinabove.
While the instant invention has been shown and described herein in what are conceived to be the most practical and preferred embodiments, it is recognized that departures may be made therefrom within the scope of the invention, which is therefore not to be limited to the details disclosed herein, but is to be afforded the full scope of the claims so as to embrace any and all equivalent apparatus and articles.
Number | Name | Date | Kind |
---|---|---|---|
3358408 | Cooper, Jr. et al. | Dec 1967 | A |
4047354 | Sutherland | Sep 1977 | A |
4169181 | Molari, Jr. | Sep 1979 | A |
4590124 | Schoenberg | May 1986 | A |
5345716 | Caplan | Sep 1994 | A |
5457921 | Kostrzecha | Oct 1995 | A |
6079168 | Shaver | Jun 2000 | A |
6613393 | Rauschnabel et al. | Sep 2003 | B1 |
6675550 | Dlubak | Jan 2004 | B1 |
6705054 | Pelton | Mar 2004 | B2 |
6715245 | Lewkowitz | Apr 2004 | B2 |
6868642 | Madden | Mar 2005 | B2 |
6959519 | Adriaansen | Nov 2005 | B2 |
6974622 | Wade | Dec 2005 | B2 |
20030159372 | Motro | Aug 2003 | A1 |
20060179737 | Trundle | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2070458 | Dec 1996 | RU |
989196 | Jan 1983 | SU |