BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic section view of an embodiment of a dry well structure including an embodiment of a stormwater filter and mount assembly;
FIG. 2 is a perspective view of an embodiment of a mount assembly of the stormwater filter and mount assembly of FIG. 1;
FIG. 3 is a perspective, top view of an embodiment of a deck assembly of the mount assembly of FIG. 2;
FIG. 4 is a perspective, bottom view of the deck assembly of FIG. 3;
FIG. 5 is a perspective view of the deck assembly of FIG. 3 in an unassembled condition;
FIG. 6 is a perspective, top view of an embodiment of a deck support assembly of the mount assembly of FIG. 2;
FIG. 7 is a section view of an embodiment of a filter unit of the stormwater filter and mount assembly of FIG. 1;
FIG. 8 is an embodiment of a method of installing the stormwater filter and mount assembly of FIG. 1 within the dry well structure; and
FIG. 9 is another embodiment of a storm well structure including a stormwater filter and mount assembly.
DETAILED DESCRIPTION
Referring to FIG. 1, a dry well structure 10 includes a wall 12 (e.g., formed of stacked, cylindrical concrete manhole sections), a base 14 and a top 16 that defines an internal volume 18 of the dry well structure. In some embodiments, the total height H of the dry well structure 10 is about 30 feet, however the height may be greater or less than 30 ft. Internal volume 18 of the dry well structure 10 is divided into multiple regions 20a-20d (e.g., each having a height h of about 5 ft.) by perforated sections 22a-22d. In the illustrated embodiment, the perforated sections 22a-22d each include a filter fabric 24a-24d that spans a gap between sides of the wall 12. An access opening 26 provides access to the internal volume 18. Access opening 26 is located atop a region 28. The access opening 26 has a diameter (e.g., between about 2 ft. and about 3 ft.) that is less than the diameter at regions 20a-20d (e.g., about 4 ft.). Access opening 26 may be closed by a cover assembly 30 including grade rings 32, frame 34 and cover 36 (e.g., formed of cast iron). A granular base material 38 is located at the base 14 of the dry well structure 10, while a rock backfill material 40 surrounds the periphery of the dry well structure.
A stormwater filter and mount assembly 42 is located between region 20a and region 44. Stormwater filter and mount assembly 42 includes a filter assembly 46 of multiple filter units 48, 50 and 52 (only filter units 50 and 52 can be seen), a mount assembly 54 that is used to support the filter assembly at the illustrated location within the internal volume 18, and an overflow conduit 56 (e.g., a 10 inch or 12 inch diameter 3034 PVC standpipe) that allows stormwater to bypass the filter units 48 at a predetermined water level (e.g., 21 inches above deck assembly 62). In some embodiments, the stormwater filter and mount assembly 42 is located near a stormwater inlet 58 through which stormwater enters the dry well structure 10. In some embodiments, it may be preferable to locate the stormwater filter and mount assembly 42 just below the inlet 58, yet close to the access opening 26 (e.g., about 10 ft. below the access opening) so that a person installing or performing maintenance on the stormwater filter and mount assembly will not have to descend far (e.g., about 15 ft. or more) into the dry well structure 10.
Referring to FIG. 2, mount assembly 54 includes the deck assembly 62 and a deck support assembly 64. As can be best seen in FIG. 1, the deck assembly 62 has a width that is greater than that of the access opening 26. Referring to FIGS. 2 and 3, deck assembly 62 includes deck components 66, 68 and 70, overflow opening 72 sized to receive the overflow conduit 56 and filter unit outlet connectors 74, 76 and 78 that connect with the filter units 48, 50 and 52 (whose footprints are illustrated by the dotted lines) to allow filtered stormwater to pass from the filter units and travel down into the lower section of the dry well 10. The deck components 66, 68 and 70 may collectively be planking or beams, each having planar upper surfaces 67, 69 and 71 that cooperate, when assembled, to form a planar support surface 73 for the filter units 48, 50 and 52 having a diameter that is substantially the same as an inner diameter of the dry well structure 10. Referring to FIG. 4, bottom 80 of the deck assembly 62 includes multiple support structures, in the illustrated embodiment L-angle beams 82, to provide additional support for the static weight of the filter units 48, 50, 52 and any dynamic loading generated through human interaction with the stormwater filter and mount assembly 42.
FIG. 5 shows the deck components 66, 68, 70 prior to their assembly to form the deck assembly 62. Prior to assembly, the deck components 66, 68, 70 are sized so that they can be carried or otherwise delivered through the access opening 26 of the dry well structure 10 (FIG. 1) and then assembled. The deck components 66, 68 and 70 may be assembled within the internal volume 18 using any suitable method or devices including adhesives, fasteners, welding, etc. The beams 82 may be already connected to the deck components 66, 68, 70 or they may be connected thereto after being delivered through the access opening 26. Any gaps or seams 84, 88 (FIG. 3) may be filled with a sealer, for example, a foam backing rod sealed with structural adhesive, such as Sikaflex®, so that the deck assembly provides a substantially water-impervious barrier upon which the filter assembly 46 rests.
Referring to FIG. 6, deck support assembly 64 is sized to be affixed to the wall 12 of the dry well structure 10. Deck support assembly 64 includes a first bracket member 90 and a second bracket member 92 that is connected to the first bracket member by connectors 94, 96 (e.g., beam supports). The first and second brackets, once connected, form a shape corresponding to that of the inner surface of the wall 12 of the dry well structure 10. In the illustrated embodiment, the first and second bracket members 90 and 92, when connected, define a generally circular outer surface that can abut and attach to the inner diameter of the concrete wall 12 to give structural support to the deck assembly 62.
Prior to connecting the first and second bracket members 90, 92 together, the first and second bracket members and connectors 94, 96 are sized to be carried or otherwise delivered through the access opening 26 of the dry well structure 10. In some embodiments, the bracket members 90 and 92 may first be attached to the wall 12 and then the connectors 94 and 96 connected to the bracket members, or the bracket members 90 and 92 may be connected together (as shown in FIG. 6) by the connectors 94 and 96 and then the bracket members may be attached to the wall 12. While the first and second bracket members 90, 92 are illustrated as U-shaped, they may be any suitable shape, such as L-shaped. The deck support assembly 64 may be assembled within the internal volume 18 using any suitable method or devices including adhesives, fasteners, welding, etc. and affixed to the wall 12. As one example, the first and second bracket members 90, 92 may include openings 98 through which concrete anchors may be inserted (e.g., 10½ inch by 3.5 inch concrete anchors). In one embodiment, a seal (e.g., a rubber strip) may be located (e.g., glued) on an upper surface 100 of the first and second bracket members 90, 92 to form a seal between the deck support assembly 64 and the deck assembly 62. Once the deck support assembly 64 is fully assembled and anchored to the wall 12 of the dry well structure 10 the deck assembly 62 may be placed thereon to form the mount assembly 54 of FIG. 2.
Any suitable materials may be used to form the mount assembly. In one embodiment, the deck components 66, 68, 70, first and second bracket members 90, 92 and connectors 94, 96 are formed of aluminum or an aluminum alloy such as Al 6061. Another suitable material for forming components includes mild steel, for example, that is rolled and powder coated.
Referring now to FIG. 7, an exemplary filter unit 50 (this discussion of the filter unit 50 may apply equally to filter units 48 and 52) is defined by and substantially enclosed by a hood 120 that optionally includes a plurality of voids 121 to enhance regulated surface cleaning of a filter medium 131. Voids 121 may be arranged in a horizontally aligned array within the material of the hood 120, for example near a lower edge 122 of the hood.
Hood 120 is attached to the filter unit 50 via an inner drainage space cap 123, which engages an upward-extending end of an inner drainage space screen 124, that extends through the center of hood 120. The connection between the inner drainage space cap 123 and the hood 120 is sealed through the use of a hood gasket 125 of an appropriate sealing material, such as neoprene rubber. Hood 120 may be attached to an outer screen support screen 127 using one or more mechanical fasteners. Such fasteners may be seated against the hood 120 so that an airtight seal is developed. Alternatively, the hood 120 is secured satisfactorily by the inner drainage space cap 123, and additional perforations of the hood are minimized or eliminated.
The components of the filter unit 50 are supported by a base 128 (a circular base in the case of a cylindrical filter assembly) of water-impermeable material, preferably plastic. This base 128 is seated over a bushing 129 that serves as the connection point between the filter unit 50 and the connector 76, this bushing 129 being in fluid communication with inner drainage space 130, that is in turn in fluid communication with filter medium 131 that is disposed in an annular space surrounding the inner drainage space 130. The filter medium 131 is bounded by an outer screen 132 that is connected to the base 128 and supported at its upper extremity by the outer screen support ring 127, and inner drainage space screen 124 that defines the inner drainage space.
The connector 76 incorporated in the deck assembly 62 connects vertically to the base of the inner drainage space 130 via the bushing 129, which both allows the flow of treated stormwater out of the cartridge and serves as a component of a float valve assembly 133. This bushing 129 serves as the connection point between the filter unit 50 and the dry well structure 10, such that the base 128 overhangs the deck assembly 62. The inner drainage space cap 123 contains a mechanism to promote the development of a siphon by permitting air to be expelled from beneath the hood but preventing air from flowing back into the housing via the inner drainage space cap 123. This mechanism is typically one of a variety of one-way check valve designs. In a preferred embodiment, check valve 134 is an umbrella-type check valve that is installed atop the inner drainage space cap 123 and shielded by a check valve cap 135. Check valve cap 135 surrounds and protects the check valve from stormwater, as discussed in greater detail below.
The filter unit 50 generally relies on hydraulic pressure to force water through the filter medium and the filter assembly is therefore at least partially submerged in stormwater during normal operation. Stormwater can enter the filter assembly, infiltrating radially inward through the outer screen 132 and filter medium 131, and into the inner drainage space 130 for removal via the connector 76. Filtration occurs as the water is strained through, and comes into contact with, the filter medium. The filtered stormwater then passes through the connector 76 and down into the dry well structure 10 to be returned to the ground. Additional details of the filter unit 50 are described by the attached U.S. Publication No. 2004/0112807, titled Filter Cartridge With Check Valve Protection, filed Aug. 21, 2003.
FIG. 8 shows a method of installing the stormwater filter and mount assembly 42 within dry well structure 10. At step 140, the unassembled components of the deck assembly 62 and deck support assembly 64 are transported to a pre-existing dry well structure 10 (FIG. 1). The unassembled components of the deck support assembly 64 are delivered through the access opening 26 and into the internal volume 18 by an installer at step 142. At step 144, the installer assembles the deck support assembly 64 and anchors the deck support assembly 64 to the wall 12 of the dry well structure 10. At step 146, the installer delivers the unassembled components of the deck assembly 62 through the access opening 26 and into the internal volume 18. The unassembled components of the deck assembly 62 are assembled and the deck assembly is placed upon the deck support assembly 64 at step 148. At step 150, the filter units 48, 50 and 52 are connected to their respective connectors 74, 76 and 78 at a location above the deck assembly 62 and the overflow conduit 56 is connected to the overflow opening 72.
The above-described stormwater filter and mount assembly 42 can be retrofitted into existing dry well structures, for example, to comply with newly or recently instituted requirements. The multiple component design can allow for ease of installation and loose tolerances relating to the dry well structure can provide embedded installation flexibility. The span (e.g., diameter) of both the deck assembly and deck support assembly, once assembled, are near to the span (e.g., diameter) between opposing faces of the wall 12 of the dry well structure 10. By providing a deck assembly and deck support assembly each formed of multiple connectable components, the separate components can easily be delivered through the access opening which may have a span that is less than those of the deck assembly and/or deck support assembly once assembled. Referring to FIG. 9, the stormwater filter and mount assembly 42 may be connected to a precast dry well structure 200 in a fashion similar to that described above prior to (or after) placing the dry well structure 200 within the ground.
A number of detailed embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, while three filter units are described above, more or less filter units may be used, for example, depending on flow requirements and size of the internal volume of the dry well structure.