Not applicable.
1. Field of the Invention
This invention relates to a design for an unmanned aerial vehicle (UAV). More particularly, the present invention relates to a UAV which can be quickly and easily disassembled, stowed and transported.
2. Prior Art
Use of unmanned aerial vehicles (UAVs), also commonly referred to as drones or remotely piloted vehicles (RPVs), are well known in the art. They provide a platform from which aerial surveillance can be performed. Likewise, they can be used to deliver small munitions. While these tasks can be performed by manned aircraft, the UAVs provide the benefit of lower cost per unit and lower operating costs than a manned aircraft.
UAVs also help protect human life. When a UAV enters hostile territory, the operator of the UAV is not in any personal danger, only the craft itself can be lost.
While the use of UAVs is well established, there is a growing need for them in military applications. One of the primary attributes that is looked at in selection of a UAV is that it can be easily assembled and disassembled and readily transportable for ease of deployment.
U.S. Pat. No. 5,035,382, entitled “Rapid Assembly Aircraft for Ground Surveillance,” issued to Lissaman et al., on Jul. 30, 1991. The Lissaman patent discloses an unmanned aircraft which can be readily disassembled into components which can be easily transported.
U.S. Pat. No. 5,118,062, entitled “Variable Geometry RPV,” issued to Alvarez Caldaron on Jun. 2, 1992. The Caldaron patent discloses a remotely piloted vehicle with solid wings. The wings and tail can be rotated so that they are parallel with the fuselage for ease of transportation or shipping.
One of the drawbacks of the UAVs shown in Lissaman and Caldaron is that the wings are made of a solid material. This makes them more susceptible to damage in assembly, disassembly and shipping. This also makes them harder to repair should they be damaged. Yet another drawback of the solid wing configuration is the cost in fabricating. The solid wing configuration also has the drawback of being bulkier, thus requiring more space when disassembled.
Due to the shortcomings of the prior art, it is an objective of the present invention to provide a UAV which can be rapidly assembled and disassembled.
Another objective of the present invention is to provide a UAV whose design is durable to withstand damage incurred in assembling, disassembling and shipping.
It is a further objective of the present invention to provide a UAV which can be easily repaired in the event of damage.
It is yet another objective of the present invention to provide a UAV which is more inexpensive to manufacture than the prior art.
Still another objective of the present invention is to provide a UAV that is lightweight and easily deployable.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated herein by reference, and which constitute a part of this specification, illustrate certain embodiments of the invention, and together with the detailed description, serve to explain the principles of the present invention.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in this application to the details of construction and to the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the design engineers and practitioners in the art who are not familiar with patent or legal forms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
The propeller 28 is rotated by an electric motor powered by batteries in the preferred embodiment. However, the propeller 28 could also be powered by a small combustion engine.
The camera pod 30 contains a camera 38 which could be capable of capturing either still and/or moving pictures. Likewise, the camera 38 could also be fixed in one direction relative to the fuselage 22 or be capable of being reoriented relative to the fuselage 22 while the UAV 20 is in flight.
In other embodiments of the present invention the camera pod 30 might be replaced with small armaments or munitions.
In the preferred embodiment shown in
A portion of the pylon 24 extends in the fuselage 22. The two are secured together by a screw 56 which passes through the fuselage 22 and pylon 24. Thus, in order to remove the wing assembly 26 and pylon 24 from the fuselage 22, the screw 56 is removed. The wing assembly 26 and pylon 24 can be lifted away from the fuselage 22. The wing assembly 26 can be removed from the pylon 24 by separating the cross spars from the rods 54 and sliding the center spar 42 out of the sleeve 48. The wing assembly 26 can then be folded by rotating the cross spars 50 so they are approximately parallel with the side spars 44. The side spars 44 are then moved so they are approximately parallel with the center spar 42. The components of the entire UAV 22 can then be stowed in a case or cylindrical tube. The UAV 22 can then be assembled for deployment by reversing the steps outlined above for stowing the UAV 22.
When the UAV 20 of the present invention is in use, it is anticipated that it would be controlled by a remote user using radio frequency controls, also referred to as RF controls, which are typically known in the art. The operation of the camera 38, armaments or munitions could also be controlled by the same means.
While this invention has been described to illustrate embodiments, this description is not to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, such as joints between components, as well as other embodiments, will be apparent to those skilled in the art upon referencing this disclosure. It is therefore intended that this disclosure encompasses any such modification or embodiments.
The present application claims priority to the provisional patent application identified by U.S. Ser. No. 60/637,481, filed on Dec. 17, 2004, the entire content of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60637481 | Dec 2004 | US |