1. Field of the Invention
The present invention relates to an electrical connector, and particularly to a straddle electrical connector having a two-stage connecting clamp attached to an edge of a circuit substrate such as a printed circuit board (PCB). The instant invention relates to a contemporarily filed application, Ser. No. 10/650,382 filed Aug. 27, 2003 with the same title and assignee with the instant application.
2. Description of Prior Art
So-called straddle electrical connectors are connected to edges of circuit boards, the circuit boards having electrical traces on both surfaces thereof. The straddle electrical connector has two rows of electrical contacts, each contact having a contact section. The edge of the circuit board is inserted between the rows of contact sections of the straddle connector. The contacts are connected to corresponding electrical traces using soldering techniques such as surface mount technology (SMT).
An example of a conventional straddle connector is shown in
When the connector 8 is mounted on the circuit board 85, the contact sections 811 are prone to scrape the solder coatings 853, 854 off from the conductive pads 851, 852. This is because the distance between the soldering sections 812 of the contact sections 811 is less than the overall thickness of the circuit board 85 at the solder coatings 853, 854. On the other hand, if the distance between the soldering sections 811 were greater than the overall thickness of the circuit board 85, it would be highly problematic or impossible to solder the soldering sections 811 to conductive pads 851, 852 via the solder coatings 853, 854. Yet when the solder coatings 853, 854 are scraped off, adequate soldering of the soldering sections 812 to the conductive pads 851, 852 cannot be obtained. Therefore, the reliability of the soldered connections may be substantially reduced.
A number of efforts has been made to improve the reliability of SMT techniques. For example,
Before the connector 9 is connected to the circuit board 95, the separator 93 is retained in the channel 923 near a mating face of the connector 9. The separator 93 keeps the connection sections 921 spaced apart so as not to touch the conductive pads 951 of the circuit board 95. When the circuit board 95 is inserted in the channel 923, a leading edge of the circuit board 95 comes into contact with the separator 93, and pushed the separator 93 further into the channel 923. When the circuit board 95 is completely inserted in the channel 923, the separator 93 is disposed in an inmost part of the channel 923. As a result, the connection sections 921 resiliently rebound and press onto the conductive pads 951. That is, when the connector 9 is connected to the edge of the circuit board 95, the distance between the connection sections 921 automatically changes to freely receive and then engage the circuit board 95. During this process, the connection sections 921 do not scrape solder from the conductive pads 951.
However, the connector 9 requires the flared guiding ends 9211 at distal ends of the contacts 92 in order to guide the circuit board 95 into the channel 923. Therefore, when the contacts 92 are soldered to the circuit board 95, the molten solder cannot completely cover the guiding ends 9211. As a result, when the connector 9 transmits high-frequency signals in operation, the guiding ends 9211 are prone to produce cross talk. The performance and specifications of the connector 9 are diminished.
A new straddle electrical connector that overcomes the above-mentioned disadvantages is desired.
Accordingly, an object of the present invention is to provide a straddle electrical connector for attachment to a circuit substrate such as a printed circuit board (PCB), wherein the connector does not scrape solder coatings off from conductive pads of the PCB during attachment.
Another object of the present invention is to provide a straddle electrical connector for attachment to a circuit substrate such as a PCB, wherein the connector greatly reduces or even eliminates cross talk during transmitting high-frequency signals.
To achieve the above-mentioned objects, a straddle electrical connector in accordance with a preferred embodiment of the present invention is for being attached to a PCB. The connector comprises a housing, upper contacts and lower contacts accommodated in the housing, and a clamp attached with the housing. Each upper contact comprises an upper connecting portion and an upper soldering portion. Each lower contact comprises a lower connecting portion and a lower soldering portion. The distance between the upper soldering portion and corresponding lower soldering portion is greater than the thickness of the PCB. Thus the PCB is put between the upper contacts and the lower contacts with zero insertion force. When the PCB is inserted further, the clamp is pushed by the PCB to slide toward the housing. During this process, the clamp presses the upper contacts and corresponding lower contacts face to face. This results in the distance between the upper soldering portion and the lower soldering portion reduced. Thereby the upper soldering portion and the lower soldering portion cooperatively engage with the circuit substrate.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Reference will now be made to the drawings to describe the present invention in detail.
The housing 10 comprises a body 12 with a contacting surface 122 defined thereon, and a pair of extending portions 14 extending in a same direction from opposite ends of the contacting surface 122 respectively. The body 11 defines a row of upper passageways 124, and a row of lower passageways 126. Each extending portions 14 comprises an upper part 142 and a lower part 144. The lower part 144 defines a positioning slot 1442 in a bottom of distal end portion thereof; and a retaining slot 1444 adjacent the positioning slot 1442, between the positioning slot 1442 and the contacting surface 122.
The base portion 22 is flat and comprises a front surface 222, a back surface 224, and an upper and a lower rows of parallel through slots 226 spanning between the front surface 222 and the back surface 224. The through slot 226 are defined at opposite top and bottom portions of the base portion 22 respectively. The first receiving portion 24 defines a plurality of first receiving slots 242 therein; the first receiving slots 242 respectively communicating with corresponding upper through slots 226. The second receiving portion 26 defines a plurality of second receiving slots 262 therein; the second receiving slots 262 respectively communicating with corresponding lower through slots 226.
The first receiving portion 24 forms a plurality of first pressing blocks 2424 at corresponding first receiving slots 242 (shown in
Each supporting portion 28 comprises an upper arm 282 and a lower arm 284. Each upper arm 282 defines an upper engaging surface 2822 on a bottom thereof. Each lower arm 284 defines a lower engaging surface 2842 on a top thereof. An upper guiding portion 2826 is defined at a distal end of each upper engaging surface 2822. A lower guiding portion 2846 is defined at a distal end of each lower engaging surface 2842. The upper guiding portion 2822 and the lower guiding portion 2846 are near the base portion 22. A block 2844 is defined at an opposite distal end of each lower engaging surface 2842.
Referring to
Referring to
The clamp 20 is then attached to the housing 10. The upper arms 282 of the clamp 20 are respectively slid along tops of corresponding upper parts 142 of the extending portions 14 of the housing 10, and the lower arms 284 of the clamp 20 are respectively slid along bottoms of lower parts 144 of the extending portions 14 of the housing 10.
The clamp 20 is thus slid toward the body 12 of the housing 10. During this process, the upper parts 142 of the extending portions 14 of the housing 10 respectively get to engage with corresponding upper engaging surfaces 2822 of corresponding upper arms 282 of the clamp 20 via corresponding upper guiding portions 2826. The lower parts 144 of the extending portions 14 of the housing 10 respectively get to engage with corresponding lower engaging surfaces 2842 of corresponding lower arms 284 of the clamp 20 via corresponding lower guiding portions 2846.
When the blocks 2844 defined on the lower engaging surfaces 2842 of the clamp 20 engage in corresponding positioning slots 1442 of corresponding lower parts 144 of the housing 10, the upper soldering portions 38 and the upper connecting portions 36 of the upper contacts 30 are respectively received through corresponding first receiving slots 242 of the first receiving portion 24 via corresponding first guiding faces 2422, and the lower soldering portions 48 and the lower connecting portions 46 of the lower contacts 40 are respectively received through corresponding second receiving slots 262 of the second receiving portion 26 via corresponding guiding faces 2622 (shown in
As detailed above, before the connector 1 is connected to the edge of the PCB 50, the distance between the upper soldering portion 38 of each upper contact 30 and a corresponding lower soldering portion 48 of a corresponding lower contact 40 is greater than the thickness of the PCB 50. Thus, the PCB 50 is freely accommodated in the connector 1. When the PCB 50 is inserted further, the clamp 20 presses the upper contacts 30 and corresponding lower contacts 40 face to face. The distance between the upper soldering portion 38 of each upper contact 30 and a corresponding lower soldering portion 48 of a corresponding lower contact 40 is reduced and less than the thickness of the PCB 50, thereby provide resilient contact between the upper and lower contacts 30, 40 and corresponding conductive pads 52, 54 of the PCB 50. This mechanism substantially reduces or even eliminates scraping off of solder from the conductive pads 52, 54 by the upper and lower contacts 30, 40. Thus strong and highly reliable SMT soldering connections are obtained.
In addition, the first slantwise guiding faces 2422 guide the upper contacts 30 through corresponding first receiving slots 242, and the second slantwise guiding faces 2622 guide the lower contacts 40 through corresponding second receiving slots 262. Therefore, the upper soldering portions 38 of the upper contacts 30 and the lower solder portions 48 of the lower contacts 40 do not need to be configured with their own guiding ends. The upper soldering portions 38 and the lower soldering portions 48 are horizontal, and molten solder can easily cover them completely. When the connector 1 transmits high-frequency signals, cross talk involving the distal ends is greatly reduced or even eliminated altogether. Thus, the connector 1 can be made to comply with very high performance and reliability specifications.
while the preferred embodiment in accordance with the present invention has been shown and described, equivalent modifications and changes known to persons skilled in the art according to the spirit of the present invention are considered within the scope of the present invention as defined in the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 92213901 | Jul 2003 | TW | national |