This application is related to Applicant's U.S. patent application Ser. No. 15/961,947 filed on Apr. 25, 2018.
This invention relates in general to precision fracking systems and, in particular, to a novel straddle packer with fluid pressure packer set and automatic stay-set used for cased wellbore or open hole well stimulation or remediation.
Wellbore pressure isolation tools, commonly referred to as “straddle packers”, are known and used to pressure isolate a downhole area of interest in a cased or open hydrocarbon wellbore for the purpose of what is known as focused or precision well stimulation or remediation. Straddle packers designed for this purpose are well known, but their use has been associated with operational issues that frequently render them unreliable.
Applicant therefore invented a straddle packer with fluid pressure packer set and velocity bypass described in the above-referenced pending U.S. patent application Ser. No. 15/961,947, the specification of which is incorporated herein by reference in its entirety. While Applicant's fluid pressure set straddle packer overcomes the shortcomings of the prior art, it has been discovered that at times it is advantageous to have the straddle packer stay in a packer set condition after the pumping of fluid into a pressure-isolated section of a formation is terminated to permit, for example, the use of pressure monitors to record pressure drop versus time in order to determine a fracture closure of adjacent geology.
There therefore exists a need for a novel straddle packer with fluid pressure packer set and automatic stay-set.
It is therefore an object of the invention to provide a straddle packer with fluid pressure packer set and automatic stay-set.
The invention therefore provides a straddle packer with fluid pressure packer set and automatic stay-set, comprising: a floating auto-J sleeve that rotates freely on a piston mandrel of a modular pressure cylinder of the straddle packer, the floating auto-J sleeve including a continuous auto-J groove in an outer periphery thereof, the auto-J groove including a plurality of auto-J groove run-in slots and a plurality of auto-J groove stay-set slots; and a plurality of auto-J pins installed in a piston sleeve of the modular pressure cylinder, the piston sleeve reciprocating with respect to the piston mandrel in response to fluid pressure pumped into the straddle packer, and the plurality of auto-J pins being respectively received in and sliding within the continuous auto-J groove as the piston sleeve reciprocates with respect to the piston mandrel and the auto-J sleeve rotates on the piston mandrel.
The invention further provides a straddle packer with fluid pressure packer set and automatic stay-set, comprising: a floating auto-J sleeve that rotates freely on a piston mandrel of a modular pressure cylinder of the straddle packer, the floating auto-J sleeve including a continuous auto-J groove in an outer periphery thereof, the auto-J groove including a plurality of auto-J groove run-in slots, a plurality of auto-J groove pressure-set slots, a plurality of auto-J groove stay-set slots and a plurality of auto-J groove shift slots; and a plurality of auto-J pins installed in a piston sleeve of the modular pressure cylinder, the piston sleeve reciprocating with respect to the piston mandrel in response to fluid pressure pumped into the straddle packer, and the plurality of auto-J pins being respectively received in and sliding within the continuous auto-J groove as the piston sleeve reciprocates with respect to the piston mandrel and the auto-J sleeve rotates on the piston mandrel.
The invention yet further provides a straddle packer with fluid pressure packer set and automatic stay-set, comprising: a floating auto-J sleeve that rotates freely on a piston mandrel of a modular pressure cylinder of the straddle packer but is restrained from axial movement thereon, the floating auto-J sleeve including a continuous auto-J groove in an outer periphery thereof, the auto-J groove including a plurality of auto-J groove run-in slots, a plurality of auto-J groove pressure-set slots, respective ones of the auto-J groove pressure-set slots being adjacent a first side of respective ones of the plurality of auto-J groove run-in slots, a plurality of auto-J groove stay-set slots, respective ones of the plurality of stay-set slots being adjacent respective ones of the respective auto-J groove pressure-set slots, and a plurality of auto-J groove shift slots, the plurality of auto-J groove shift slots being between respective ones of the plurality of auto-J groove stay-set slots and a second side of the respective ones of the auto-J groove run-in slots; and a plurality of auto-J pins installed in a piston sleeve of the modular pressure cylinder, the piston sleeve reciprocating with respect to the piston mandrel in response to high-pressure fluid pumped into the straddle packer, and the plurality of auto-J pins being respectively received in and sliding within the continuous auto-J groove as the piston sleeve reciprocates with respect to the piston mandrel and the auto-J sleeve rotates on the piston mandrel.
Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, in which:
The invention provides a straddle packer with a fluid pressure boosted packer set and automatic stay-set for use in precision well stimulation or remediation treatments in either open hole or cased wellbores (hereinafter referred to collectively as “wellbores”). The automatic stay-set is enabled by a floating auto-J sleeve that rotates freely on a piston mandrel of a hydraulic piston that sets the straddle packer. A plurality of auto-J pins retained in a piston sleeve that surrounds the floating auto-J sleeve on the piston mandrel respectively engage an auto-J track in the floating auto-J sleeve. The auto-J track is designed to automatically shift the straddle packer from a run-in condition to a stay-set condition, or vice versa, each time the straddle packer is set using pumped fluid pressure. In the run-in condition, the packers of the straddle packer are in a relaxed state and do not provide a fluid seal against a surrounding well casing or well bore. In the set condition, the packers are in fluid sealing contact with the well casing or well bore. In the stay-set condition, the packers remain in sealing contact with the well casing or well bore. When the straddle packer is in the run-in condition, pumping high-pressure fluid into the straddle packer at a rate that exceeds a predetermined threshold pump rate will shift the straddle packer to the set condition. When pumping stops, the straddle packer automatically shifts to the stay-set condition. When the straddle packer is to be moved, the pumps are reactivated to return the straddle packer to operational pressure and then stopped again, which automatically shifts the straddle packer back to the run-in condition.
The internal components and operation of Applicant's straddle packer with fluid pressure packer set and velocity bypass are described in detail in the above-identified co-pending U.S. patent application Ser. No. 15/961,947, and that description will not be repeated here.
In either case, the relaxation of the packer elements 18, 74 after pumping is terminated will automatically move the auto-J pins 106a-106d from the auto-J shift slots 116 to the auto-J run-in slots 110, which shifts the straddle packer 10 back to the run-in condition shown in
As will be understood by those skilled in the art, shifting of the straddle packer 10 from the run-in condition to the stay-set condition and back again to the run-in condition is exclusively dependent of fluid pressure and fluid flow control and is independent of work string manipulation of any sort. This is particularly advantageous in very long lateral bores, where precise work string manipulations may be difficult, if not impossible, to due frictional drag on the work string.
It should be further understood that the shape and configuration of the auto-J groove 108 is illustrative only.
The explicit embodiments of the invention described above have been presented by way of example only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2769497 | Reistle, Jr. | Nov 1956 | A |
2927638 | Hall, Sr. | Mar 1960 | A |
3090436 | Briggs, Jr. | May 1963 | A |
3160209 | Bonner | Dec 1964 | A |
4487258 | Jackson et al. | Dec 1984 | A |
5152340 | Clark et al. | Oct 1992 | A |
5383520 | Tucker et al. | Jan 1995 | A |
5803177 | Hriscu et al. | Sep 1998 | A |
5810082 | Jordan et al. | Sep 1998 | A |
5890540 | Pia et al. | Apr 1999 | A |
5904207 | Rubbo et al. | May 1999 | A |
6253856 | Ingram et al. | Jul 2001 | B1 |
6484805 | Perkins et al. | Nov 2002 | B1 |
6564876 | Vaynshteyn | May 2003 | B2 |
6776239 | Elsinger et al. | Aug 2004 | B2 |
6832654 | Ravensburger et al. | Dec 2004 | B2 |
7341111 | Van et al. | Mar 2008 | B2 |
7377834 | Surjaatmadja et al. | Mar 2008 | B2 |
7500526 | Telfer | Mar 2009 | B2 |
7789163 | Kratochvil et al. | Sep 2010 | B2 |
8201631 | Stromquist et al. | Jun 2012 | B2 |
8336615 | Hughes et al. | Dec 2012 | B2 |
8490702 | Stromquist et al. | Jul 2013 | B2 |
9016390 | Stewart et al. | Apr 2015 | B2 |
9334714 | Stromquist et al. | May 2016 | B2 |
9580990 | Flores et al. | Feb 2017 | B2 |
9598939 | Lee | Mar 2017 | B2 |
20060077053 | Park et al. | Apr 2006 | A1 |
20070034370 | Moyes | Feb 2007 | A1 |
20110198082 | Stromquist | Aug 2011 | A1 |
20150376979 | Mitchell et al. | Dec 2015 | A1 |
20160369585 | Limb et al. | Dec 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20200256153 A1 | Aug 2020 | US |