This invention relates in general to precision tracking systems and, in particular, to a novel straddle packer with fluid pressure packer set and velocity bypass used for cased wellbore or open hole well stimulation or remediation.
Wellbore pressure isolation tools, commonly referred to as “straddle packers”, are known and used to pressure isolate a downhole area of interest in a cased or open hydrocarbon wellbore for the purpose of what is known as focused or precision well stimulation or remediation. Straddle packers designed for this purpose are well known, but their use has been associated with operational issues that frequently render them unreliable.
There therefore exists a need for a novel straddle packer with fluid pressure packer set and velocity bypass that overcomes the operational issues associated with known prior art straddle packers.
It is therefore an object of the invention to provide a straddle packer with fluid pressure packer set and velocity bypass.
The invention therefore provides a straddle packer with fluid pressure packer set, comprising: a multicomponent mandrel that extends from an upper end to a lower end of the cased bore straddle packer, the multicomponent mandrel including an active mandrel tube component with active mandrel tube fluid ports that permit high pressure fluid to flow from a central passage of the multicomponent mandrel through the active mandrel tube component; an upper packer element and a lower packer element that respectively surround the multicomponent mandrel in a spaced apart relationship, the upper packer element and the lower packer element respectively being, in a normally relaxed condition; a modular pressure cylinder that reciprocates within a restricted range on the active mandrel tube component, the modular pressure cylinder including at least two interconnected pressure cylinder modules having interconnected pressure cylinder walls and interconnected pressure pistons that reciprocate within pressure cylinders, the interconnected pressure pistons including pressure cylinder fluid ports that permit fluid flowing through the active mandrel tube fluid ports to enter the pressure cylinders and simultaneously urge the interconnected pressure cylinder walls and the interconnected pressure pistons to move in opposite directions along an axis of the active mandrel tube component to compress the respectively normally relaxed upper and lower packer elements to a packer set condition.
The invention further provides a straddle packer with fluid pressure packer set and velocity bypass, comprising: a multicomponent mandrel having a central passage that extends from an upper end to a lower end of the multicomponent mandrel, the multicomponent mandrel having a completion string connection mandrel component at an upper end of the straddle packer to permit the connection of a tubing string to the straddle packer and a velocity bypass crossover at a lower end of the straddle packer to permit the connection of a velocity bypass sub; an upper packer element and a lower packer element that respectively surround the multicomponent mandrel in a spaced apart relationship; a modular pressure cylinder that reciprocates within a restricted range on an active mandrel tube component of the multicomponent mandrel, the modular pressure cylinder including a plurality of interconnected pressure cylinder modules connected end-to-end; an, upper compression bell that compresses the upper packer element and a lower compression bell that compresses the lower packer element when fluid is pumped into the straddle packer at a flow rate that exceeds a flow rate threshold, the upper compression bell being connected to an upper end of a sliding sleeve that is connected by a crossover to an upper end of interconnected cylinder walls of the modular pressure cylinder, and the lower compression bell being connected to a lower end of interconnected pistons of the modular pressure cylinder; an upper and a lower mandrel tube of the multicomponent mandrel, the upper mandrel tube being connected on a top end to the completion string mandrel component and on a lower end to a mandrel flow sub, and an upper end of the lower mandrel tube being connected to a lower end of the mandrel flow sub and on a lower end to the active mandrel tube component of the multicomponent mandrel, the mandrel flow sub including at least one mandrel flow sub nozzle; and the velocity bypass sub having a central passage in fluid communication with the central passage of the multicomponent mandrel and housing a velocity bypass valve having the flow rate threshold, whereby fluid pumped through the completion tubing string into the multicomponent mandrel flows through the at least one mandrel flow sub nozzle and the velocity bypass valve until a flow rate of the fluid exceeds the flow rate threshold, after which the velocity bypass valve closes and the fluid flows only through the at least one mandrel flow sub nozzle and into fluid ports of the modular pressure cylinder, urging pressure pistons of the modular pressure cylinder in a first direction and pressure cylinder walls of the modular pressure cylinder in an opposite direction along an axis of the active mandrel tube component to compress the respective packer elements to a packer set condition.
The invention yet further provides a straddle packer with fluid pressure packer set and velocity bypass, comprising: a multicomponent mandrel having a completion string connection component which is threadedly connected to an upper mandrel tube; a mandrel flow sub connected to a downhole end of upper mandrel tube; at least one mandrel flow sub nozzle in the mandrel flow sub; a lower mandrel tube connected to a downhole end of the mandrel flow sub; a mandrel tube crossover component connected to a downhole end of the lower mandrel tube; the active mandrel tube component connected to a downhole end of the mandrel tube crossover component; a lower packer element mandrel sleeve component connected to a downhole end of the active mandrel tube component; a lower crossover sub connected to the downhole end of the lower packer element mandrel sleeve component; an upper packer element and a lower packer element that respectively surround the multicomponent mandrel in a spaced apart relationship; a modular pressure cylinder that reciprocates within a restricted range on an active mandrel tube component of the multicomponent mandrel, the modular pressure cylinder including a plurality of interconnected pressure cylinder modules connected end-to-end, each modular pressure cylinder including: a pressure cylinder wall; a pressure piston with a pressure piston seal that seals against an inner surface of the pressure cylinder wall; each pressure piston reciprocating within a pressure cylinder chamber; pressure cylinder seals that respectively inhibit the migration of fluid out, of the respective pressure cylinder chambers; each pressure piston having a pressure cylinder male coupling sleeve and a pressure cylinder female coupling sleeve; the respective pressure cylinder male coupling sleeves having an external thread that engages an internal thread in the respective pressure cylinder female coupling sleeves to connect the respective pressure pistons together; respective pressure cylinder coupling seals to inhibit any migration of fluid between the pressure cylinder male coupling sleeves and the pressure cylinder female coupling sleeves; a pressure cylinder fluid port to let the high pressure fluid flow through the active mandrel tube fluid ports into the respective pressure cylinder chambers; and pressure cylinder pressure equalization ports in the respective pressure cylinder walls to equalize pressure behind the respective pressure pistons with ambient wellbore pressure; an upper compression bell that compresses the upper packer element and a lower compression bell that compresses the lower packer element when high pressure fluid is pumped into the straddle packer at a flow, rate that exceeds a predetermined flow rate threshold, the upper compression bell being connected to an upper end of a sliding sleeve that is connected by a crossover to an upper end of interconnected cylinder walls of the modular pressure cylinder, and the lower compression bell being connected to a lower end of interconnected pistons of the modular pressure cylinder; an upper and a lower mandrel tube of the multicomponent mandrel, the upper mandrel tube being connected on an upper end to the completion string mandrel component and on a lower end to a mandrel flow sub, and an upper end of the lower mandrel tube being connected to a lower end of the mandrel flow sub and on a lower end to the active mandrel tube component of the multicomponent mandrel, the mandrel flow sub including at least one mandrel flow sub nozzle; and a velocity bypass sub connected to the velocity bypass sub crossover, the velocity bypass sub having a central passage in fluid communication with the central passage of the multicomponent mandrel and housing a velocity bypass valve having the flow rate threshold, whereby fluid pumped through the completion tubing string into the multicomponent mandrel flows through the at least one mandrel flow sub nozzle and the velocity bypass valve until a flow rate of the fluid exceeds the flow rate threshold, after which the fluid flows only through the at least one mandrel flow sub nozzle and into fluid ports of the modular pressure cylinder, urging pressure pistons of the modular pressure cylinder in a first direction and pressure cylinder walls of the modular pressure cylinder in an opposite direction along an axis of the active mandrel tube component, to compress the respective packer elements to a packer set condition.
Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, in which;
The invention provides a straddle packer with a fluid pressure boosted packer set and velocity bypass for use in precision well stimulation or remediation treatments in either open hole or cased wellbores (hereinafter referred to collectively as “wellbores”). The straddle packer has spaced-apart upper and lower packer elements that bracket a mandrel flow sub component of a multicomponent mandrel that extends from an upper end to a lower end of the straddle packer. The mandrel flow sub has at least one abrasion-resistant fluid nozzle used to inject well stimulation or well remediation fluid (hereinafter referred to collectively as “high pressure fluid”) into a section of a wellbore that is pressure isolated by the respective spaced-apart upper and lower packer elements when the respective packer elements are in a packer set condition. In this document, “flow sub nozzle” means any orifice, permanent or interchangeable, through which high pressure fluid may be pumped, including but not limited to a bore and a slot. In the packer set condition the respective upper and lower packer elements are in high pressure sealing contact with a wellbore. The respective upper and lower packer elements are compressed to the packer set condition by a modular pressure cylinder that is activated by the high pressure fluid pumped through a tubing string connected to the straddle packer. The modular pressure cylinder is assembled from a plurality of identical, interconnected pressure cylinder modules. Each hydraulic cylinder module has a cylinder wall, a cylinder chamber and a piston that reciprocates within the cylinder chamber. The pistons of the respective pressure cylinder modules are interconnected by piston coupling sleeves. High pressure fluid pumped through the tubing string enters the respective cylinder chambers via respective pressure cylinder fluid ports in the piston coupling sleeves. The high pressure fluid urges the pistons and the cylinder walls in opposite directions along an axis of the active mandrel component, which compresses the upper and lower packer elements to the packer set condition. When the pumping of high pressure fluid stops, the upper and lower packer elements return back to the run-in condition. The plurality of interconnected pistons provide a large piston area exposed to the high pressure fluid. The piston area can be adjusted by adding or removing cylinder modules to/from the modular pressure cylinder. A velocity bypass valve on a downhole end of the straddle packer permits high pressure fluid to flow through the fluid nozzles and the velocity bypass valve so long as a threshold rate of flow remains at or below the predetermined threshold rate of flow. This has the advantages of permitting the wellbore to be flushed in an area of the straddle packer to remove debris before the packers are set. It also permits the tool to rapidly depressurize and return to the run-in condition once high pressure fluid pumping has terminated, minimizing a probability that the straddle packer will become “stuck in the hole”.
The completion string connection component 12 has an upper packer element compression shoulder 15 and an upper packer element sleeve 16 (see
As explained above, the elastomeric upper packer element 18 is supported on the upper packer element sleeve 16 of the completion string connection component 12 of the multicomponent mandrel 11. The multicomponent mandrel 11 has a central passage 13 that provides an uninterrupted fluid path through the multicomponent mandrel 11. The multicomponent mandrel 11 includes the following interconnected components: the completion string connection component 12, which is threadedly connected to an upper mandrel tube 22; the mandrel flow sub 30 connected to a downhole end of upper mandrel tube 22; the wear-resistant, replaceable mandrel flow sub nozzle(s), in this embodiment 32a-32h (only 6 of which, 32a-32b, 32c-32d and 32e-32f, are visible in this view); a lower mandrel tube 42 connected to a downhole end of the mandrel flow sub 30; a mandrel tube crossover component 44 connected to a downhole end of the lower mandrel tube 42; an active mandrel tube component 46 that supports the modular pressure cylinder 48 is connected to a downhole end of the mandrel tube crossover component 44; the lower packer element mandrel sleeve component 72 connected to a downhole end of the active mandrel tube component 46; the lower crossover sub 76 connected to the downhole end of the lower packer element mandrel sleeve component 72; and the optional velocity bypass sub 82 connected to a lower crossover sub male connector 80 of the lower crossover sub 76.
In one embodiment the velocity bypass sub 82 has a threaded downhole end 83 to permit the connection of another downhole tool or, in this embodiment, a lower end cap 96 that caps the central passage 13 of the multicomponent mandrel 11 and prevents debris from entering the velocity bypass sub 82 and the central passage 13 if the straddle packer 10 is run into a downhole proppant plug, or other debris in a wellbore. In an alternate embodiment the lower end cap 96 is connected directly to the lower crossover sub 76.
The active mandrel tube component 46 slidably supports the respective pressure cylinder modules 54a-54d of the modular pressure cylinder 48. As explained above, the number of pressure cylinder modules used in the straddle packer 10 is a matter of design choice, but four modules has been found to be appropriate for many applications. If the number of pressure cylinder modules is changed, a length of the active mandrel tube component 46 is modified accordingly, as will be readily understood by those skilled in the art. In this embodiment, the active mandrel tube component 46 has two active mandrel tube fluid ports (collectively 49a-49h) that provide fluid communication between the central passage 13 and each of the respective pressure cylinder modules 54a-54d. Active mandrel tube axial grooves 53a-53d respectively ensure fluid communication with the respective pressure cylinder modules 54a-54d regardless of a relative rotation of the active mandrel tube component 46 with respect to the modular pressure cylinder 48. The active mandrel tube axial grooves 53a-53d also ensure fluid communication between the central passage 13 and the respective pressure cylinder modules 54a-54d when the straddle packer 10 is shifted from the run-in condition the to set condition shown in
In this embodiment, each of the pressure cylinder modules 54a-54d are identical and each pressure cylinder module 54a-54d respectively includes the following components: a pressure cylinder wall 55a-55d; a pressure piston 56a-56d with respective pressure piston seals 66a-66d that respectively seal against an inner surface of the respective pressure cylinder walls 55a-55d; each pressure piston 56a-56d reciprocates within a pressure cylinder chamber 59a-59d; pressure cylinder seals 67a-67d respectively inhibit the migration of fluid out of the respective pressure cylinder chambers 59a-59d; each pressure piston 56a-56d has a pressure cylinder male coupling sleeve 58a-58d and a pressure cylinder female coupling sleeve 60a-60d; in one embodiment the respective pressure cylinder male coupling sleeves 58b-58d may have an external thread that engages an internal thread in the respective pressure cylinder female coupling sleeves 60a-60c to connect the respective pressure pistons 56a-56d together, in another embodiment the respective cylinder modules 54a-54d are overlapped as shown but not threadedly connected and held together by compression between the upper packer element 18 and the lower packer element 74; respective pressure cylinder coupling seals 68b-68d inhibit any migration of fluid between the pressure cylinder male coupling sleeves 58b-58d and the pressure cylinder female coupling sleeves 60a-60c; pressure cylinder fluid ports 57a-57h let the high pressure fluid flow through active mandrel tube fluid ports 49a-49h into the respective pressure cylinder chambers 59a-59d; pressure cylinder pressure equalization ports 52a-52j in the respective cylinder walls 55a-55d equalize pressure behind the respective pressure pistons 56a-56d with ambient wellbore pressure. In one embodiment the active mandrel tube fluid ports 49a-49h and the pressure cylinder pressure equalization ports 52a-52j are provided with high pressure fluid filters (for example, sintered metal filters that known in the art (not shown)) that permit fluid to pass through the respective active mandrel tube fluid ports 49a-49h and pressure cylinder pressure equalization ports 52a-52j but inhibit particulate matter from migrating into the respective pressure cylinder chambers 59a-59d.
A pressure cylinder crossover sleeve 62 caps the pressure cylinder male coupling, sleeve 58a of the pressure cylinder module 54a. A pressure cylinder crossover sleeve seal 69 provides a fluid seal between the pressure cylinder crossover sleeve 62 and the active mandrel tube component 46, and a pressure cylinder coupling seal 68a provides a fluid seal between the pressure cylinder crossover sleeve 62 and the pressure cylinder male coupling sleeve 58a. The pressure cylinder female coupling sleeve 60d is threadedly connected to a lower compression bell male coupling sleeve 70. A pressure cylinder coupling seal 68e provides a high pressure fluid seal between the pressure cylinder female coupling sleeve 60d and the lower compression bell male coupling sleeve 70. A compression bell seal 66j prevents the migration of fluid between the lower compression bell male coupling sleeve 70 and the active mandrel tube component 46.
When high pressure fluid is pumped into the straddle packer 10, the modular pressure cylinder 48 compresses the upper packer element 18 and the lower packer element 74 to isolate a section of the wellbore between the two packer elements 18, 74 after a pumped fluid rate exceeds a flow rate of the flow sub nozzle(s) 32a-32h. If the optional velocity bypass sub 82 is present, the modular pressure cylinder 48 compresses the upper packer element 18 and the lower packer element 74 to isolate a section of the wellbore between the two packer elements 18, 74 after the velocity bypass valve closes, as will be explained below in detail with reference to
As explained above, when high pressure fluid is pumped into the straddle packer 10, it exits through the mandrel flow sub nozzle(s) 32a-32h and, if the optional velocity bypass sub 82 is present, the velocity bypass valve jet nozzle 92 and velocity bypass sub ports 88a, 88b of the open velocity bypass valve 84 (see
After the pumping of the high pressure fluid is completed and pumping stops, the high pressure fluid may or may not continue to flow through the mandrel flow sub nozzle(s) 32a-32h. If the optional velocity bypass sub 82 is present, once the rate of flow of the high pressure fluid drops below the predetermined threshold, the velocity bypass valve 84 opens and fluid rapidly drains from the central, passage 13, which drains the respective pressure cylinder chambers 59a-59d. As the pressure cylinder chambers 59a-59d are drained, the upper packer element 18 and the lower packer element 74 return to the relaxed condition, which urges the pressure cylinder walls 55a-55d and the pressure pistons 56a-56d back to the run-in condition seen in
The explicit embodiments of the invention described above have been presented by way of example only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Applicant claims the benefit to priority under 35 U.S.C. § 119(e) of provisional patent application 62/608,707 filed on Dec. 21, 2017.
Number | Name | Date | Kind |
---|---|---|---|
2769497 | Reistle, Jr. | Nov 1956 | A |
2927638 | Hall, Sr. | Mar 1960 | A |
3090436 | Briggs, Jr. | May 1963 | A |
3160209 | Bonner | Dec 1964 | A |
4487258 | Jackson et al. | Dec 1984 | A |
4519456 | Cochran | May 1985 | A |
5152340 | Clark et al. | Oct 1992 | A |
5383520 | Tucker et al. | Jan 1995 | A |
5803177 | Hriscu et al. | Sep 1998 | A |
5810082 | Jordan, Jr. | Sep 1998 | A |
5890540 | Pia et al. | Apr 1999 | A |
5904207 | Rubbo et al. | May 1999 | A |
6253856 | Ingram et al. | Jul 2001 | B1 |
6484805 | Perkins et al. | Nov 2002 | B1 |
6564876 | Vaynshteyn | May 2003 | B2 |
6776239 | Elsinger et al. | Aug 2004 | B2 |
6832654 | Ravensburger et al. | Dec 2004 | B2 |
7341111 | Van et al. | Mar 2008 | B2 |
7377834 | Surjaatmadja et al. | Mar 2008 | B2 |
7500526 | Telfer | Mar 2009 | B2 |
7789163 | Kratochvil et al. | Sep 2010 | B2 |
8201631 | Stromquist et al. | Jun 2012 | B2 |
8336615 | Hughes et al. | Dec 2012 | B2 |
8490702 | Stromquist et al. | Jul 2013 | B2 |
9016390 | Stewart et al. | Apr 2015 | B2 |
9334714 | Stromquist et al. | May 2016 | B2 |
9580990 | Flores et al. | Feb 2017 | B2 |
9598939 | Lee | Mar 2017 | B2 |
20050077053 | Walker et al. | Apr 2005 | A1 |
20070034370 | Moyes | Feb 2007 | A1 |
20100126713 | Koh | May 2010 | A1 |
20150376979 | Mitchell et al. | Dec 2015 | A1 |
20160369585 | Limb et al. | Dec 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190195039 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62608707 | Dec 2017 | US |