The invention pertains to a straight connection piece that is partially inserted, approximately half-way, into hollow profiles that are connected together end-to-end, said hollow profiles being used to form a spacer frame or spacer for insulated glass panes, wherein the cross section of the straight connector fits into the inner hollow section of the hollow profile and approximately corresponds to it at least in areas, with a centered recess on the back of the connector that faces the outer crosspiece of the hollow profile in the installed position, with the ends of the outer crosspiece of the hollow profiles that face each being deformable inwardly into the recess.
A straight connector of this type is known from EP 0 133 655 B2 and from EP 0 330 906 B1 and has been shown to be particularly useful with regard to the mutual alignment of the hollow profiles or hollow profile parts to be connected. The recess at the back of this prior art straight connector has a minimal depth and is bordered at its lateral ledges by a raised area. Furthermore, inside the recess is a projecting flat spacer so that the depth at this point of the recess is further reduced. This recess, then, only allows a minimal compression using the outer crosspiece of the hollow profiles to be connected. In order to nevertheless create a sealed abutment of the hollow profiles at the point of connection, the known straight connectors have projecting stops that hold the ends of the hollow profiles to be connected at a distance. This is intended to facilitate the penetration of sealant into the seams. This makes the formation of a sealed point of connection of the hollow profiles dependent on sufficient sealant being provided in this area and that it be fed through narrow gaps, which requires very careful procedures.
From DE 32 43 692 A1, a straight connector is known of this type that is formed from individual pieces. In the direction of longitudinal extension, this straight connector has an uninterrupted piece without a recess at its side that faces an inner crosspiece of the hollow profiles in its installed position, said uninterrupted piece forming a U-shaped cross section together with side pieces. Therefore, the narrow sides of the U-sides of this straight connector face the outer crosspiece of the hollow profiles. Inside the U-cross section are crosspieces that are at a distance to one another at the center of the straight connector so that each of the outer crosspieces of the hollow profile can be bent inward into the interior of the straight connector somewhat, provided that this is permitted by the side pieces of the hollow profile in this area. This allows the outer crosspiece of the hollow profile to be pressed only minimally inward in this case as well, whereby a narrow opening arises between the outside ends of the crosspieces of these hollow profiles through which to allow seal material. At the side facing the inner cross section, this straight connector also has a spacer to produce a peripheral seam at the point of abutment between the hollow profiles to be connected. Thus, it is difficult to produce a good and secure seal of the points of abutment of the hollow profiles to be connected. Therefore, the danger arises in pushing in the hollow profiles that the side pieces will bulge outward so that the dimensional stability, which is absolutely required in order to maintain a separation between two parallel panes of an insulating window, is not ensured. The common inward pushing of the outside of the hollow profile against the resistance of the outside pieces can even somewhat push the hollow profiles to be connected away from one another, under certain circumstances.
Thus, the object is to create a straight connector of the type mentioned above that enables the precise deformation, at the point of connection, of the outside pieces of the hollow profiles to be connected in such a manner that a solid connection results and that the ends of the hollow profiles are pulled together, whereby at the same time a good seal can be attained. In this manner, it should be possible to push the outside pieces of the hollow profiles inward at the point of abutment without the danger that the side pieces bulge outward, thus compromising their sealing surfaces. Overall, the ability to form a sealed abutment of the hollow profiles to be connected should be improved.
This object is met in that the recess runs across the entire width at the back of the straight connector and is open toward the outside crosspiece of the hollow profile in its installed position, that this recess is narrow and bordered by steep sides of pieces that lead up to it or by steep walls or perpendicular leading edges of an opening, and that the ends of the outside crosspieces facing one another of the hollow profile to be connected are bent inward-into the recess after the deformation and are plastically lengthened or deep drawn.
A recess of this type that runs across the entire width and in particular is open to the sides makes it possible to deform the outside crosspieces of the hollow profiles to be connected inward into the recess from the installed position and to bend them correspondingly narrowly and angularly around the sharp borders of the recess and also to somewhat pull them inward into the recess in the process, i.e. to effect a deep drawing of them, which can also pull together and solidly press together the two ends of the hollow profiles to be connected. Since the recess is open toward the outsides, at least parts of the side pieces can also be pulled inward into this recess so that they do not bulge, but contribute to the fastening of the two hollow profiles at the straight connector. By bending around the sharp edges and through the deep drawing process, this results in a shape-locked connection that could withstand considerably higher forces than normally occur in a spacer or the like for insulating glass panes during use.
The voids that form at the outer crosspieces of the hollow profiles via deep drawing can be filled in either beforehand or afterward with sealant, whereby the extension across the entire width of the straight connector results in a correspondingly void-free fill with sealant, extending up to the side pieces and thus resulting in a good seal.
A preferred embodiment of the straight connector according to the invention provides that parallel side walls are located at its back that extend up to the recess, which in particular is located in the center, that border cavities located on both sides of the recess at the back. This saves on weight and also allows the outer crosspieces of the hollow profiles to be connected to be deformed adjacent to the actual point of connection so as to improve their mechanical fastening.
Furthermore, it is possible that the cavities continue on into the recess and form a continuous channel at the back of the straight connector that is closed in the installed position by the hollow profile, and that the cavities and the recess have a greater depth than that which corresponds to the reach-in of the deformed crosspieces at the ends of the hollow profiles. Of course, the bending around sharp edges and the deep drawing of the crosspieces occurs in this case only at the parallel side pieces that run in the longitudinal direction of extension, but this is still sufficient to cause the effects already explained of pulling together the two hollow profiles to be connected. At the same time, a channel remains open inside the straight connector that can be filled with desiccant or that allows desiccant to pass through the connection point as well during filling. This allows hollow profiles to already be connected to the straight connector before the bending into a frame begins and before a last connection point is closed using a straight connector. Thus, hollow profiles can be produced that are practically infinite in length using the straight connector so as to then bend them into spacer frames of various sizes.
The edge at the entrance to the recess of the straight connector can be approximately at a right angle or even an acute angle, and the borders of the recess that face one another can run parallel with respect to one another and at approximately a right angle with respect to the longitudinal direction in which the straight connector extends. Thus, the side walls that extend up to the recess and constituting it across a portion of the width, or walls that run across the entire width, or a recess made in the back of the straight connector, have a steep, approximately right-angled ledge at which the outer crosspieces of the hollow profiles to be connected can be correspondingly bent and at a sharp angle and deep drawn despite a relatively narrow recess.
If the connection between the straight connector according to the invention and the hollow profiles ends by the deep drawing of the outer crosspieces of the hollow profiles at the sharp edges of the recess, sealant can be applied from the outside to the slit-like opening that results just before insertion between the panes of an insulating window, thus preparing a good seal. A seal can be applied right after the attachment of the individual panes to the outside or the back of the hollow profiles, whereby the seal material penetrates into the slit-like opening that results at the point of connection of the hollow profiles, providing a good seal.
The cross section of the straight connector can be made to fit a hollow profile with parallel side pieces and two crosspieces spaced at a distance from one another, wherein somewhat inclined or convex or concave transition pieces are provided between the outer crosspiece and each side piece in the installed position, wherein the depth of the recess corresponds approximately to the cross sectional depth of the hollow profiles that is traversed by the transition pieces or exceeds it—in particular minimally. This also allows the transition pieces to be deformed and bent somewhat inward so that this deformation process at the back of the straight connector does not result in reaction forces at the side pieces of the hollow profile such that they deviate and bulge outward. The outer surfaces thereby remain parallel at these side pieces and maintain their dimensional stability, which is of great importance for a sealed placement of panes of the insulating window at these pieces.
Dependent on the width of the recess that extends in the longitudinal direction of extension of the straight connector is the dimension that the parts of the outer crosspieces of the hollow profile can have that are bent inward or deep drawn. So that they have a sufficiently large dimension to facilitate a correspondingly good effect during the deep drawing and at connection and sealing, it is favorable if the width of the recess in the longitudinal direction of extension of the straight connector is approximately twice as large as its depth. If necessary, the width can also be more than twice the depth so that the parts of the outer crosspieces of the hollow profile that bend inward also find enough space. As already mentioned, deep drawing at the steep and ideally sharp-edged borders of the recess prevents the side pieces from buckling or bulging outward since the sinking of the material into the recess along with its sufficient depth exerts a strong pull on the material and can even result in creep. The material of the hollow profiles is thus pulled into the recess, this process continuing up to the transition pieces as well so that an outward bulging to the sides is prevented.
To properly align the ends of the hollow profiles to be connected that are pressed together, it is favorable if at least one ramp is provided in the direction of flow of the respective hollow profile just in front of the recess, said ramp ending at the entrance into the recess and then dropping at an acute angle into the recess. This results in a cross sectional enlargement of the straight connector near these ramps, by means of which the respective hollow profile is forced into a desired position relative to the straight connector and thus with respect to the other hollow profile. Since these ramps are placed just in front of the recess, they are thus located on the back of the straight connector containing the recess and each of them cooperates with the crosspieces of the hollow profile located on the outside in the installed position.
An embodiment of the straight connector according to the invention for a further improvement of the mutual alignment of the hollow profiles provides that there are ramps on the bottom facing away from the recess, said ramps extending up to a center groove, and that the bottom groove holds a cutting ridge present at the ends of the hollow profiles to be connected in the installed position. When the hollow profiles are cut into sections, there in general arises a cutting ridge that runs toward the center of the hollow profile, primarily at the cross piece that faces the inside of the insulating glass pane in the installed position. This fact can be utilized by means of the measure mentioned to improve the shape-locking of the two hollow profiles using the straight connector and at the same time to accommodate this frequently disruptive ridge at the straight connector in the process without compromising the seamless connection of the ends of the hollow profiles due to subsequent deformations. At the same time, these ramps located at the bottom or at the lower side of the straight connector provide an additional alignment of the hollow profiles relative to one another and provide good clamping action, which also results in an automatic centering of the profiles. In other words, when a hollow profile is pushed onto the straight connector or, vice versa, when the straight connector piece is inserted into a hollow profile, the resistance offered by the ramps increases more and more so that when the hollow profiles are pushed onto both sides they find their way to approximately the middle of the straight connector practically automatically, where the cutting ridge can then come to rest.
The ramps at the top and/or the bottom of the straight connector, whose respective inclines are in opposite directions, can be laterally offset from one another with respect to the longitudinal centerline of the straight connector. Thus, the ramps are asymmetric with respect to the centerline so that one ramp on one side can become a stop for the hollow profile pushed onto the other side, and vice versa. This can be provided both on the outside or upper side as well as on the bottom or inside of the straight connector so that the centering of the hollow profiles is further improved.
For straight connectors whose recess on the back is bordered on both sides by continuous walls, it is ideal if these walls have at least one notch or similar opening at their upper ledge that runs in the longitudinal direction of extension of the straight connector, said notch forming a ventilation opening in conjunction with the hollow profile placed on it. If the recess is filled subsequently with a sealant or seal material, and if this material penetrates behind the deep drawn parts of the outside crosspieces, air that is located there can be displaced and kept from preventing the sealant from penetrating. In the same manner, sealant that is already located at the straight connector prior to the deep drawing of the outer crosspieces can better seep out and be displaced into joints, corners and narrow voids without being held back due to air pockets. At the same time, the air pockets that compromise the seal over time can be prevented altogether.
As already mentioned, it is possible that at least the recess is filled with a sealant at least in areas and that the ledges of the outer crosspieces of the hollow profiles to be connected can be pressed into this sealant as they are deep drawn. The deep drawing of the crosspieces can therefore be utilized to compress a sealant provided ahead of time in the straight connector so that it creeps into voids and under the deformed parts of the hollow profile, providing the best possible filling of the free cross sectional areas with sealant. The deep drawing process used to pull together the ends of the hollow profiles to be connected and to solidly connect them using the straight connector can thus be utilized in this case at the same time to press sealant inward into gaps and voids and to effect the best possible distribution of this sealant.
An embodiment of the straight connector, in particular one containing a filling of plastically elastic sealant ahead of time in its recess, is comprised of the recess having a flat extension at the narrow sides of the straight connector into which sealant can move from the center recess to the area of the side pieces, at least when the hollow profiles are compressed together. As already mentioned, the process of compressing and deep drawing of the outer crosspieces can be utilized to distribute sealant that had been applied ahead of time to the straight connector. With the flat continuations mentioned at the narrow sides of the straight connector, sealant can thus be pressed deliberately into this area of the side pieces so that these areas are also well sealed, wherein this sealing process accompanies the compression, deep drawing and connection, and does not require its own process step.
In yet another embodiment of this concept, at least one channel leading to the bottom side can be provided at the bottom of the recess and in particular a flat crevasse can be provided at the bottom into which the channel feeds. This permits the transport of plastically elastic sealant, which was placed ahead of time at the straight connector in the recess, to the bottom of the straight connector facing away from the recess and between this bottom and the inside crosspiece of the hollow profiles in the installed position as a result of the deformation and deep draw process. This allows the sealant to be distributed along the entire periphery of the straight connector at the point of abutment of the two hollow profiles, primarily when combining these measures, and allows for a good seal. Thereby, the sealant can also penetrate into the smallest of seams between the straight connector and the pieces of the hollow profile that are created by any deviations of manufacturing tolerances.
However, it is also possible that at the floor of the straight connector the crevasse extending across the entire width of the straight connector is sufficient to ensure the distribution of the sealant in any case.
It is preferred that at least one channel is provided at each foot of the walls that border the recess, said channel leading to a bottom-side crevasse. This pushes the sealant, which is also placed under pressure along the walls that border the recess when deep drawing, into corresponding channels and moves it to the bottom-side crevasse.
The straight connector can be made of metal or die cast material or of hard plastic, or can be made of a stamped and bent sheet metal part. All of these materials and manufacturing methods make it possible to provide on the back of this straight connector the recess according to the invention into which the outside crosspieces of the hollow profiles that form a spacer or spacer frame for insulating glass panes can be deformed inward and deep drawn.
A straight connector made of sheet metal can have a U-shaped cross section that is made to fit into the inside cross section of the hollow profile and the U-crosspiece of the sheet metal part can contain the recess, which in particular is stamped out. This allows a very simple straight connector to be bent from sheet metal in which the recess is provided through stamping or other forming process, which at the same time can have the already mentioned sharp-edged ledge. This results in a very simple straight connector in which the recess can run across the entire width, that the width is smaller near the outside crosspiece than at the inside crosspiece, which is made possible by the transition pieces with an inclined cross section.
The U-cross section is filled with a gasket between its sides, for example a foam gasket insert, on its side facing away from the recess, at least in an area that extends beyond the recess toward both sides, and in particular a plastic-elastic sealant placed between the U-crosspiece with its recess and this gasket. This results in a good seal when deep drawing at this point despite the cross section having the shape of an open U directed inward, while at the same time displacing the plastic elastic sealant as a result of the deep drawing process, said sealant being able to fill out any seams and voids located in the area of abutment, as already described.
An advantage that applies to practically all of the exemplary embodiments can be seen in that a crevasse is formed by the deep drawing of the area of the outside crosspieces of the hollow profiles near the point of abutment to be connected, said crevasse being well filled with sealant or when an insulating glass pane is sealed with a seal material, and then providing in this area of the point of abutment for an correspondingly larger cross sectional thickness of the seal material. Thus, a thicker layer of seal material results at this point of abutment as a result of the deep drawing of the outside crosspieces, which can be utilized to dimension the thickness of the peripheral seal material as a whole smaller since the generally required thickness of the seal layer is still attained in the area of abutment.
A process to connect the ends of two hollow profiles or to connect a hollow profile that is bent into a spacer frame, by means of a straight connector that is inserted into the ends to be connected, in particular approximately half way, whereupon the ends of the hollow profile to be connected are deformed and compressed together at least at their outside such that a shape lock occurs with the straight connector, can be provided to meet the objective of producing as seal-tight and dimensionally stable a connection as possible in that the crosspieces of the ends of the hollow profiles facing one another that form the outer sides of the hollow profile are both deformed, and thereby deep drawn in their deformation zone, at the same time into a recess that runs across the entire width of the straight connector. This allows the connection of the two hollow profiles to be made at their ends very simply in that a section of the straight connector is inserted into each hollow profile, or the hollow profiles are pushed onto the straight connector so that they both come to rest at the recess located in the center of the connector. Then, for example, the point of abutment can be deep drawn in the manner described using a punch from the outside, which even better pulls the two hollow profiles together due to the flow of the material and due to the tensile force exerted on the material, and which prevents outward bulging in the side areas.
It is especially preferred if the ledges of the crosspieces that face one another of the hollow profiles to be connected are bent around sharp edges at the ledge of the recess and are deep drawn in the process. This results in sharp-edged deformations at the crosspieces in the end areas facing one another that favor the pulling together of the two hollow profiles.
The crosspieces to be deformed can each be bent around the walls and deep drawn at their ledge, with the walls laterally bordering a channel that extends along the outside or the back of the straight connector. In the process, sealant located inside such a channel that forms a recess can be simultaneously compressed together and squeezed into voids, and the air located in these voids can be simultaneously displaced. The channel running along the outside of the straight connector in its longitudinal direction can, however, also be designed such that it also extends across the area of the recess so that when filling with desiccant, the desiccant can pass through the straight connector even after the deep drawing process.
In a different embodiment, the ledges of the outside crosspieces of the hollow profiles to be connected facing one another can be bent around the walls that border the recess of the straight connector on both sides and that extend especially across the entire width of the straight connector, or around leading edges of stamped recesses, and can be deep drawn there.
It is especially suitable if the ends of the outside crosspieces that face one another are pressed into a plastic elastic sealant located in the recess during deep drawing, and if the sealant is thereby displaced behind the bent areas of the crosspieces and/or between the straight connector and the side pieces or between it and the inner crosspiece of the hollow profile that faces away from the area of deformation.
Therefore, the sealant can be provided either just beforehand at the straight connector or it can be injected afterward after connection and in particular after attaching the panes of an insulated glass window.
Regardless of whether sealant is provided in advance or not, a sealing procedure can be done after connection in which the seal material ideally penetrates through the opening formed at the outside at the abutting crosspieces by means of deep drawing, thereby sealing remaining voids. At the same time, an enlarged thickness of the seal material is attained in this area so that a smaller thickness of the seal material is allowed at the overall periphery of a spacer frame of this type, but still achieving a minimum thickness in the area of the joint as required.
It should still be mentioned that the ends of the crosspieces—when connecting using the straight connector—can be deep drawn far enough that the distance resulting and/or remaining between them is small and in particular smaller than the dimension of the desiccant beads filled or to be filled. This provides on the one hand a sufficient compression and connection of the hollow profiles using the straight connector and on the other hand provides that sealant and/or seal material can penetrate into the hollow profiles and into the straight connector, but that desiccant elements or beads present there cannot exit.
Below, exemplary embodiments of the invention are explained in more detail with the help of the drawings. Shown schematically are:
Individually:
In the following explanation of the various exemplary embodiments of straight connectors and spacers or spacer frames manufactured using these straight connectors, parts with the same function are given the same reference numbers in different embodiments of the invention. Any features and measures that are not described in connection with all exemplary embodiments illustrated do however apply to them unless they are excluded as a result of the differences clarified in the above list of figures.
A straight connector, identified in the various embodiments in its entirety as 1 and constructed in these various embodiments according to the above list of Figures, is partially inserted, approximately half-way, into hollow profiles 2 that are connected together end-to-end according to
According to numerous Figures showing cross sections, for example
The detailed representation of the various straight connectors 1 in the various figures shows that the recess 4 runs across the entire width of the back of the respective straight connector 1 and opens up toward the outside crosspiece 3 in the installed position as well as toward the transition pieces 6 that connect to this crosspiece 3. In contrast to a recess that runs across only a portion of the width at the back of a straight connector 1, for example according to EP 0 133 655 B2 or DP 0 330 906 B1 or DE 32 43 692 A1, this recess 4, which penetrates across the entire width and that is open upward—toward the respective crosspiece 3—and also is open to the side, allows the crosspieces 3 to be deformed to an appropriate extent in the area where the hollow profiles 2 to be connected abut, said deformation also including the transition pieces 6.
The recess 4 is relatively narrow and has a variety of differently shaped steep borders so that the ends of the outside crosspieces 3 of the hollow profiles 2 to be connected that face one another are bent around sharp edges and plastically lengthened or deep drawn after they are deformed inward into the recess 4. In the figures already mentioned that show the deformed crosspieces 3, it can be clearly seen that they are bent by a clearly recognizable angle in comparison with the un-deformed shape of the crosspieces 3. On one hand this sharp-edged bend causes the deep draw effect in the process and on the other hand-so does the tool that is used to bend the respective parts of the crosspieces 3 and to force or squeeze them into the recess.
The sharp-edged steep borders of the recess 4 already mentioned are constructed differently depending on the particular exemplary embodiment.
In the exemplary embodiments according to
In the straight connector 1 according to
In the exemplary embodiments according to
Another way to form the recess 4 and to provide it with relatively sharp edges and steep borders is accomplished in the exemplary embodiment according to
In all of the exemplary embodiments, a tensile force can also be exerted at the same time on the hollow profiles 2 to be connected at the recess 4 of the straight connector 1, as a result of the deformation and deep draw process mentioned, which pulls together and fixes the ends of the hollow profiles so that a sealed abutment of the two hollow profiles 2 can be created in conjunction with a sealant to be applied in this area, said abutment also exhibiting a high rigidity.
The embodiments according to
On the one hand, in order to attain a high stability at the straight connector 1 in all of these cases so that it can best stabilize and stiffen the point of connection, but at the same time to save on weight, parallel side walls 16 (FIG. 1 and associated following views) can be provided that extend up to the recess 4, in particular in the center, said side walls bordering cavities 17 located on both sides of the recess 4. If these cavities 17 are open toward the back, i.e. toward the crosspieces 3 of the hollow profiles 2, as is the case for the embodiments according to FIG. 1 and associated following views and FIG. 25 and associated views as well as FIG. 34 and associated following views, the crosspieces 3 can, if necessary, also continue to be deformed inward near this recess 4, which can result in a further strengthening of the shape-fitted connection between the hollow profiles 2 and the straight connector 1, especially in conjunction with end blocks 18 according to FIG. 1 and associated following views, FIG. 13 and FIG. 14. If, as in the exemplary embodiments according to FIG. 25 and associated following views, end blocks 18 of this type are not present along with continuous walls 8 near the recess 4, the side walls 16 mentioned can be constituted or replaced by the pieces 10 running in the longitudinal direction.
In the embodiments according to FIG. 25 and associated following views, the cavities 17 also continue on into the recess 4 and form a straight channel, in particular at the back of the respective straight connector 1, that is closed off in the installed position by the hollow profile 2. However, this is also the case if, according to the exemplary embodiment according to
In the side views and longitudinal sections, for example in
Of most importance from the many different cross sections (see also the list of figures) it can be seen that the cross section of the straight connector is made to fit a hollow profile 2 having parallel side pieces 20 and two crosspieces at a distance from one another, namely the outer crosspiece 3 and an inner crosspiece 21, in which the somewhat inclined or convex or concave transition pieces 6, which were already mentioned, are provided between the outside crosspiece 3 and the side pieces 20 in the installed position. The depth of the recess 4 corresponds approximately to the cross sectional depth of the hollow profiles 2 that is traversed by the transition pieces 6 or exceeds it somewhat. This also allows the transition pieces 6 as well to be deformed and pulled somewhat inward and downward at the point of abutment during the deep drawing process. It should also be mentioned that the side pieces 20 can extend out beyond the inner crosspieces 21 via continuation pieces 22 (FIGS. 10 through 24), in order to form a correspondingly wide side surface for the panes of an insulation glass material to be held at a distance and sealed.
The width of the recess 4, i.e. its dimension in the direction in which the straight connector 1 extends, is approximately twice as large as its depth or somewhat larger so that the bent and deep drawn parts of the outer crosspiece 3 can find enough space and so that their ends end up sitting somewhat above the bottom 4a of the recess 4.
It can be seen in numerous figures, and especially well in
It is further seen in numerous figures, and again especially well in
In
In
In numerous exemplary embodiments, namely in the exemplary embodiment according to
As shown in
The various exemplary embodiments of the straight connector 1 allow different manufacturing methods to be used, but in each case resulting in a straight connector 1 at which the ends of the outer crosspieces 3 that face one another can be deformed inward and deep drawn in an advantageous manner in order to then more strongly pull together and fasten the two hollow profiles 2 to be connected. For example, the straight connector 1 can be made of metal or die-cast or of hard plastic where the exemplary embodiments according to
According to
The process to connect the ends of two hollow profiles 2 using one of the straight connectors 1 described above, which can be inserted or pushed into the ends of the hollow profiles to be connected, approximately half-way into each one, is done quite similarly in all cases. After pushing the hollow profiles 2 onto the straight connector 1 or vice versa after inserting the straight connector 1 into the ends of the hollow profiles 2 to be connected, the outsides of these profiles are deformed and compressed together such that a shape lock arises with the straight connector 1. This occurs in the exemplary embodiments illustrated by crosspieces 3 of the hollow profiles to be connected that constitute the outer sides of the hollow profiles 2 being deformed at their ends inward and pressed into a recess 4 that runs across the entire width of the straight connector 1, the crosspieces thereby being somewhat lengthened or deep drawn as well in their zone of deformation. This is thus not just a minimal amount of inward buckling, but is a considerable deformation that also deforms some of the transition areas or transition pieces 6 somewhat as well due to the recess that extends across the entire width, so that an outward bulging at the side surfaces is prevented. This provides a correspondingly good sealing of the glass panes that are to be laid against the side pieces 21—with their continuation pieces 22.
The ledges or ends of the crosspieces 3 of the hollow profiles 2 to be connected that face one another are bent around sharp edges at the ledge of the recess 4 and thus deep drawn. The areas of the crosspieces 3 to be deformed are each bent around the walls 8 or end faces 9 of pieces 10 that lead up to the recesses 4, and deep drawn at their ledge areas, i.e. they bend around those parts or areas that laterally border a channel that runs at the outside of the straight connector 1 and forms the recess 4.
It is especially favorable if the ledges of the outside crosspieces 3 of the hollow profiles 2 to be connected that face one another are bent and deep drawn around walls 8, or their leading edges, that border the recess 4 on both sides and that run across the entire width, as has already been explained with the corresponding figures and has been illustrated in them.
In the process, the ends of the outside crosspieces 3 that face one another can be pressed into a sealant 27 located in the recess 4 during deep drawing and the sealant 27 can be thus displaced behind the bent areas of the crosspieces 3 and/or between the straight connector 1 and the side pieces 20 or between it and the inner crosspiece 21 of the hollow profile 2 facing away from the deformation.
In the exemplary embodiments already described above in which desiccant beads 19 can also be filled in through the connection area, the beads are thus able to pass by the straight connector 1 designed accordingly, for example according to
Many exemplary embodiments also show that a seal layer 32 can be applied to the outside of the hollow profiles 2 after compression together with the straight connector 1, either prior to or after the application of a sealant, said seal layer partially penetrating into the opening arising between the deep drawn parts of the crosspieces 3, thus producing a correspondingly large layer thickness at this point, which must be sealed particularly well so that the thickness of this seal layer 32 can be kept to a minimum at the remaining areas. Thus, it is advantageous for the seal that an inwardly directed recess results from the deep drawing of the ends of the crosspieces 3 of the hollow profiles 2 to be connected that face one another, with the deep drawing being done at the outside of a spacer or spacer frame so manufactured, since at this point the seal material 32 then has a correspondingly large thickness through which air or moisture can no longer pass.
This seal layer 32 can penetrate either directly into the respective opening and also into the recess 4 of the straight connector 1, as is illustrated in
Overall, a straight connector 1 results, that facilitates a deformation and compression of the ends of the outer crosspiece 3 of the hollow profiles 2 to be connected, thanks to the deep recess 4 that extends across the entire width, with its associated sharp edges, wherein the transition pieces 6 can also be pulled along with into this recess 4 so that an outward bulging of the side pieces 20 can be prevented, said outward bulging being a reaction to the bending of the crosspiece 3 inward. At the same time, the ends of the hollow profiles to be connected are drawn together as a result of the deep drawing process, i.e. they are pressed against one another and sealed airtight in conjunction with the displaced sealant or subsequently injected sealant and/or seal material. A very simple straight connector 1 thus permits a considerable improvement of the point of abutment of the two hollow profiles 2 to be connected.
The straight connector 1 is partially inserted, preferably half-way into hollow profiles 2 that are open at their ends and are to be connected together end-to-end there. The profiles are used to form a spacer frame or spacer for insulated glass panes. The cross section of the straight connector 1 fits into the inner hollow cross section of the hollow profile 2 and is designed and contoured according to this hollow cross section at least in areas in order to also support and stiffen the hollow profile 2 near the point of abutment from the inside. At its back that faces the outer crosspiece 3 of the hollow profile 2 in the installed position, the straight connector 1 has in its center a recess 4 that extends across both sides of the point of abutment of the hollow profile 2, into which the ends of the outer crosspiece 3 of the hollow profile 2 that face one another can be deformed inwardly. In the process, the recess 4 is bordered either along its entire length on both sides by walls 8 across the entire width of the straight connector 1, or only by the ends of longitudinal pieces or by ledges of an opening so that the outside crosspieces 3 of the hollow profiles 2 can be deformed and deep drawn inward into this recess 4 at corresponding sharp-edged borders, with transition pieces 6 present at the hollow profiles 2 also being deformed inward into this recess 4 along with so as to prevent buckling or outward bulging at the side pieces 20 of the hollow profiles 2.
Number | Date | Country | Kind |
---|---|---|---|
100 42 047 | Aug 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP01/09482 | 8/17/2001 | WO | 00 | 2/26/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/20931 | 3/14/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4608802 | Bayer | Sep 1986 | A |
5560731 | Kronenberg | Oct 1996 | A |
6764247 | Kronenberg | Jul 2004 | B1 |
Number | Date | Country |
---|---|---|
88 05 575.2 | Aug 1988 | DE |
0 110 295 | Jun 1984 | EP |
0 330 906 | Sep 1989 | EP |
Number | Date | Country | |
---|---|---|---|
20030202844 A1 | Oct 2003 | US |