This invention relates generally to medical devices, methods of use, and methods of manufacturing and more particularly, a strain relief member for a medical device delivery system.
When in use, a medical device may enter a patient at a convenient insertion location and then be urged to a target region. Once the distal portion of the medical device has entered the patient, a physician may urge the distal tip forward by applying longitudinal forces to the proximal portion of the medical device. To effectively communicate these longitudinal forces, it may be desirable for at least a portion of the device to have a level of pushability and kink resistance, particularly near the proximal end.
The path taken by a medical device within a patient may be tortuous, requiring the medical device to change direction frequently. In some cases, it may even be necessary for the medical device to double back on itself. Movement within a patient may also require precision. While advancing a medical device during a procedure, a physician may apply torsional forces to the proximal portion of the device to aid in steering the device. Torsional forces applied on the proximal end may translate to the distal end to aid in steering. It may be desirable, therefore, that the proximal portion of a medical device have a level of torqueablility to facilitate steering.
To facilitate manipulation of the proximal end of the medical device and/or to interface with ancillary devices, medical devices may include a proximal hub or manifold. Such a hub may include a port or connector for connecting the medical device to a handle or other device. In some devices, hubs may be adhesively bonded to the device along with a tubular strain relief. Due at least in part to the way that a medical device is held or used during a medical procedure, however, known strain reliefs may not be designed to sufficiently prevent the device from bending, kinking, or separation, leading to a loss of device function. An improved strain relief is needed to protect at least a portion of the proximal end of a medical device, for example, at a handle junction.
The present disclosure provides a strain relief member for a medical device delivery system, methods of use thereof, and methods of manufacturing.
In one embodiment, a strain relief member for a medical device delivery system includes a body member having a first end with a first outer diameter, a second end with a second outer diameter, an inner surface facing a lumen that extends axially through the body member along a longitudinal axis, and an outer surface opposite to the inner surface. The outer surface of the body member includes a plurality of depressions. A threaded first connector is disposed at the first end of the body member. The body member includes a first material and the first connector includes a second material. The first material is more flexible than the second material. A portion of the outer surface of the body member covers at least a portion of the first connector.
In another embodiment, a strain relief member for a medical device delivery system includes a body member having a first end with a first outer diameter, a second end with a second outer diameter, an inner surface facing a lumen that extends axially through the body member along a longitudinal axis, and an outer surface opposite to the inner surface. The outer surface of the body member includes a plurality of depressions. A first connector is disposed at the first end of the body member. The body member includes a first material and the first connector includes a second material. The first material is more flexible than the second material. A medical device shaft is disposed through at least a portion of the lumen of the body member.
In a further embodiment, a method of manufacturing a strain relief member for a medical device delivery system includes injection molding a strain relief member. The strain relief member includes a body member having a first end with a first outer diameter, a second end with a second outer diameter, an inner surface facing a lumen that extends axially through the body member along a longitudinal axis, and an outer surface opposite to the inner surface. The outer surface of the body member comprises a plurality of depressions. A threaded first connector is disposed at the first end of the body member. The body member includes a first material and the first connector includes a second material. The first material is more flexible than the second material. A portion of the outer surface of the body member covers at least a portion of the first connector. A portion of the outer surface of the body member covers at least a portion of the first connector.
In a further embodiment, a method of manufacturing a strain relief member for a medical device delivery system includes injection molding a threaded first connector and over molding a strain relief member. The strain relief member includes a body member having a first end with a first outer diameter, a second end with a second outer diameter, an inner surface facing a lumen that extends axially through the body member along a longitudinal axis, and an outer surface opposite to the inner surface. The outer surface of the body member includes a plurality of depressions. The threaded first connector is disposed at the first end of the body member. The body member includes a first material and the first connector includes a second material. The first material is more flexible than the second material. A portion of the outer surface of the body member covers at least a portion of the first connector. A portion of the outer surface of the body member covers at least a portion of the first connector.
Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be within the scope of the disclosure, and be encompassed by the following claims.
The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views. In certain instances, details may have been omitted that are not necessary for an understanding of aspects disclosed herein.
In the present application, the term “proximal” refers to a direction that is generally towards a physician during a medical procedure, while the term “distal” refers to a direction that is generally towards a target site within a patient's anatomy during a medical procedure. Reference to coupling or connection of components, unless specified otherwise, includes direct connection as well as connection through intervening components. In this disclosure, reference is made to a physician. Reference to a physician includes any other suitable medical practitioners. For example, physician assistants, nurses, or other health professionals.
In general and as described in more detail herein with reference to reference numbers and Figures, a medical device 2 for introducing a tool 4 into a patient is shown and described herein. Such a tool 4 may include a retrieval device. The device 2 may be implemented for use with tools 4 configured to extend to a remote location within a patient but may be further or alternatively implemented for other clinical, diagnostic, observational or other medical uses such as, deployment of structure, interacting with tissue in a remote location, observation, and the like.
In some embodiments, as shown in
A strain relief 18 may be connected to the proximal end portion 10 of the medical device shaft 6 and a proximal portion 22 of the strain relief 18 coupled with the distal end 14 of the handle 12. A strain relief 18 may include a pliable design. In some embodiments, the strain relief 18 provides support to the proximal portion 10 of the medical device shaft 6 and prevents at least a portion of the medical device shaft 6 from bending or kinking. A strain relief 18 may additionally or alternatively prevent separation at the junction of the medical device shaft 6 and the handle 12.
Referring to
In some embodiments, multiple structures extend through and/or are disposed within the strain relief 18 lumen 34. As discussed above, a medical device shaft 6 may extend through the lumen 34. An inner tube 38 may extend through the lumen 34 over at least a portion of the surface of the medical device shaft 6. Example tubes 38 may include polymer tubing.
A strain relief 18 may additionally or alternatively include internal reinforcement, such as a nitinol cannula. Such internal reinforcement may contribute to prevention of kinking and separation from a handle 12 junction. An inner surface 24 of the strain relief 18 may face the lumen 34. An outer surface 26 of the strain relief 18 is located opposite to the inner surface 24.
In some embodiments, as shown in
In some embodiments, one of the distal or proximal ends 20, 22 has a first outer diameter and the other one of the distal or proximal end 20, 22 has a second outer diameter. The outer diameter of the strain relief 18 may range from about 1.5 FR to about 25 FR. The strain relief 18 lumen 34 may have a diameter ranging from about 1.0 FR to about 8.0 FR. The term “about” as used in this specification is specifically defined to be a range that includes the reference value as well as plus or minus 5% of the reference value. For a tapered strain relief 18, the largest diameter may be approximately 0.40 inches/10 millimeters and taper down to a diameter larger than the outer diameter of component(s) disposed within the strain relief 18 lumen 34, such as a medical device shaft 6. The lumen 34 may have a diameter of approximately 8.0 FR/2.7 millimeters. The lumen 34 may have a consistent diameter throughout the body member 28, regardless of whether the outer surface 33 of the body member 28 is tapered or otherwise shaped. The value of a first outer diameter may be different than the value of the second outer diameter. For example, one such diameter may be larger than the other (as shown for example in
The strain relief 18 body member 28 may have a generally cylindrical or tubular shape with a substantially constant second outer diameter (e.g.,
Referring to
The strain relief 18 lumen 34 may be a tubular shape having a constant diameter. In some embodiments, however, as shown in
A strain relief 18 may include depressions or cut-outs 40 for additional flexibility and protection of a medical device shaft 6 and/or handle 12 junction during movement of a medical device 2. For example, as shown in
In some embodiments, the strain relief 18 may be extruded or injection molded. For example, the strain relief 18 may be formed as a one-piece, over-molded component. In some embodiments, a portion of the strain relief 18 is extruded, injection molded, or over molded while other portion(s) of the strain relief 18 are made using a different process.
As shown in
Any suitable connecting means may be used to couple the strain relief 18 to the handle 12. For example, as shown in
In some embodiments, the strain relief 18 may be made from a soft to semi-rigid material such as a plastic, polyurethane, PEBAX, polyethylene, polypropylene, fluorocarbon polymers, silicone, latex, polyvinyl chloride, cope loop tubing, like biocompatible polymeric materials, or a combination thereof. Any suitable material may be used to form the strain relief 18 such that the strain relief 18 is sufficiently flexible to facilitate maneuvering a tool 4 disposed inside a patient's body, but also has enough strength to provide support and prevent kinking or separation. The first and/or second connector 42, 48 may each be made from a material less flexible than the material used to make the strain relief 18. In some embodiments, a connector 42, 48 may be made from a semi-rigid to rigid plastic material such as a plastic, acrylonitrile butadiene styrene, like biocompatible polymeric materials, or a combination thereof.
Before using a strain relief 18 to direct a tool 4 of the medical device shaft 6 into a patient, in some embodiments, the strain relief 18 may be already provided on and stored with the medical device shaft 6, such that the strain relief 18 is in readiness for use by a physician. In some embodiments, the strain relief 18 may be stored separately from the medical device 2 and thus a physician places the strain relief 18 onto the medical device shaft 6 of the medical device 2 prior to use. To prep the strain relief 18 for use, the physician may thread either the distal end or proximal end 20, 22 of the strain relief 18 onto a medical device shaft 6.
A user may place the tool 4 inside a patient's body (which may be inserted with or without the use of a guide wire) such that the medical device shaft 6 may be used to direct the tool 4 to the desired location where an object to be extracted, or a clinical area to be investigated, observed, or interacted with is located. The user may manipulate the medical device 2 to perform a medical procedure without unnecessary medical device shaft 6 kinking or damage to a junction between the medical device shaft 6 and a handle 12.
After use, the user may decouple the strain relief 18 from medical device 2 such that the strain relief 18 may again be used for a subsequent procedure. The user may also remove (e.g., by peeling off) the strain relief 18 from the medical device shaft 6 as needed or desired. In some embodiments, the strain relief 18 may be configured to be peeled away from the medical device shaft 6, for example, for disposal. The strain relief 18 may include a slit or spiral cut on the body member 28 such that the strain relief 18 may be removed from the medical device 2 after the strain relief 18 has been used to direct the distal end 8 of the medical device shaft 6 to a desired location. Alternatively, the strain relief 18 may be disposed of subsequent to a procedure along with the medical device 2, functioning as a one-time-use device.
While various embodiments are described herein, the disclosure is not to be restricted except in light of the attached claims and equivalents. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above, expressly including that the construction materials identified may be used in all embodiments, the relative and absolute sizes of component structures including connectors, lumens, depressions (including any combination of shapes and/or patterns of depressions), and/or inner tube(s) may be incorporated in any physically-possible combination in all embodiments and alternative embodiments encompassed by the claims. Moreover, the advantages described herein are not necessarily the only advantages and it is not necessarily expected that every embodiment will achieve all of the advantages described.
This patent application claims priority from U.S. Provisional Application No. 62/904,094, filed Sep. 23, 2019, the entirety of which is hereby fully incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62904094 | Sep 2019 | US |