The present disclosure relates to a gas turbine engine combustor, and more particularly to a liner panel therefor.
A gas turbine engine includes a compressor for compressing air which is mixed with a fuel and channeled to a combustor wherein the mixture is ignited within a combustion chamber to generate hot combustion core gases. At least some combustors include combustor liners to channel the combustion gases to a turbine which extracts energy from the combustion core gases to power the compressor, as well as produce useful work to propel an aircraft in flight or to power a load, such as an electrical generator.
Gas turbine combustors have evolved from full hoop structures to full hoop shells with attached liner panels that serve as heat shields. Liner panels may have low durability due to local hot spots that may cause high stress and cracking.
A combustor component of a gas turbine engine according to an exemplary aspect of the present disclosure includes a substrate with a cold side, a central core section and a hot side, the cold side and the hot side have a porosity different than the central core section.
A combustor of a gas turbine engine according to an exemplary aspect of the present disclosure includes a substrate mounted to a support shell, the substrate defines a cold side, a central core section and a hot side, the cold side and the hot side have a porosity different than the central core section.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 54, 46 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
With reference to
With reference to
With reference to
Each heat shield floatwall panel 68, 70 is formed of a substrate 80 that defines a porosity tailored cold side 76 and a porosity tailored hot side 78 to increase durability through an increase strain tolerance. That is, the heat shield floatwall panels 68, 70 are made more durable by tailoring the cold side 76 and hot side 78 through an increase in porosity. The porosity reduces the structural stiffness such that the surfaces better absorb thermal strain, which lowers the stress and increases the durability.
In the disclosed, non-limiting embodiment, the cold side 76 and the hot side 78 have approximately 30% porosity while a central core section 82 is a 100% dense solid layer at the center on the neutral axis. The porosity is confined to the surfaces of the panel. For a panel thickness of approximately 0.04 inches (1.0 mm) each of the cold side 76 and the hot side 78 have approximately 30% porosity for a depth of approximately 0.016 inches (0.4 mm) while the central core section 82 with 100% density is approximately 0.008 inches (0.2 mm) thick. That is, the 100% density is generally equivalent to 0% porosity. The fastener assemblies F may be of full 100% density for integrity.
Finite element studies (
The heat shield floatwall panels 68, 70 may be readily incorporated into existing combustors so that their cooling scheme is essentially unchanged. The porosity may be included in the casting which will minimize fabrication costs.
It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.