This application claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2019-0118086, filed on Sep. 25, 2019, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
The following disclosure relates to a strainer for a fuel pump, which is mounted on an inlet of the fuel pump and filters out a foreign material contained in a fuel sucked into the fuel pump.
Generally, a device of a vehicle or the like that is driven by receiving a liquid fuel, such as a gasoline engine or diesel engine, includes a fuel tank in which the fuel is stored, and the fuel tank is installed with a fuel pump module configured to be connected to the engine through a fuel supply line to supply the fuel stored in the fuel tank to the engine. Here, in the fuel pump module, a strainer is mounted on a fuel inlet such that the fuel in the fuel tank is primarily filtered and sucked into a fuel pump included in the fuel pump module.
Such a strainer 44 is coupled to a fuel pump 41 of a fuel pump module 40 mounted in a fuel tank as illustrated in
In order to satisfy the performance of the fuel pump, the strainer needs to have a maximum filtering area to reduce a flow resistance of the fuel. However, in a case where minimization of the fuel pump module is required, since an installation space for the strainer is small, it is necessary to design the strainer to have a space-saving shape.
(Patent Document 1) KR 10-1075796 B1 (published on Oct. 17, 2011)
An embodiment of the present invention is directed to providing a strainer for a fuel pump, which has a relatively large filtering area and a small size at the same time.
In one general aspect, a strainer for a fuel pump includes: a communicating pipe including a flow path formed to communicate with a fuel inlet of the fuel pump; a filter including an internal space in which a fuel flows and coupled to the communicating pipe so that the internal space communicates with the communicating pipe; and a rib disposed in the filter and coupled to the communicating pipe, wherein the filter includes a first filtering portion extending in a length direction with respect to the communicating pipe, a connecting portion extending in a width direction at an edge of the first filtering portion, and a second filtering portion extending in the length direction at the connecting portion and spaced apart from the first filtering portion in the width direction.
The filter may be H-shaped.
First bent portions may be formed by bending the first filtering portion so that opposite sides of the first filtering portion in the length direction are directed toward the communicating pipe, a 2-1-th bent portion which is a central portion connected to the connecting portion may be formed by bending the filter at the connecting portion so that the second filtering portion is directed toward the communicating pipe, and 2-2-th bent portions may be formed by bending the second filtering portion at the 2-1-th bent portion so that opposite sides of the second filtering portion in the length direction surround the communicating pipe.
In the filter, the 2-2-th bent portions of the second filtering portion may be arranged between the first bent portions of the first filtering portion in the length direction.
A first coupling portion may be formed on the first bent portion of the first filtering portion, a second coupling portion may be formed on the 2-2-th bent portion of the second filtering portion, and the first coupling portion and the second coupling portion may be coupled to fix the first bent portion of the first filtering portion and the 2-2-th bent portion of the second filtering portion to each other.
The first coupling portion may include an insertion groove having an inner width larger than a width of a slit of a surface of the first coupling portion that faces the second coupling portion, the second coupling portion may include a locking protrusion having a shape corresponding to the insertion groove, and the locking protrusion may be inserted into the insertion groove.
The insertion groove of the first coupling portion may have one end or both ends open, and the locking protrusion of the second coupling portion may be inserted through the open end of the insertion groove.
The rib may be disposed in the first filtering portion, the connecting portion, and the second filtering portion, and the rib may be integrally formed.
The rib may include a first rib disposed in the first filtering portion, the connecting portion, and the second filtering portion of the filter and coupled to the communicating pipe, and a second rib formed to be separate from the first rib and coupled to the filter.
The second rib may include a frame coupled to the filter and exposed to the outside of the filter, and a support protrusion extending from the frame and protruding to the internal space of the filter.
Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
Hereinafter, a strainer for a fuel pump according to the present invention having the configuration as described above will be described in detail with reference to the accompanying drawings.
As illustrated in
The communicating pipe 100 may include a flow path formed to penetrate through upper and lower surfaces of the communicating pipe 100, and a fuel inlet of a fuel pump may be inserted into the flow path of the communicating pipe 100 to be coupled to and communicate with the communicating pipe 100. Further, the filter 200 may be coupled to a lower side of the communicating pipe 100 so that a part of the lower side of the communicating pipe 100 protrudes in the filter 200. In addition, a coupling portion for coupling the rib 300 may be formed at a lower end portion of the communicating pipe 100 positioned inside the filter 200.
The filter 200 may include an upper filter 201 and a lower filter 202 that are vertically spaced apart from each other so that a space in which a fuel flows is formed in the filter 200. Edges of the upper filter 201 and the lower filter 202 may be bonded to each other by, for example, fusion. The filter 200 may be formed by using, for example, a net formed of a resin material. The filter 200 may be formed by folding in half a sheet of net used to form the filter, and overlapping and bonding the edges of the upper filter and the lower filter. Further, the communicating pipe 100 may be injection-molded in the net used to form the filter so that the communicating pipe 100 and the filter 200 are integrated with each other, and the communicating pipe 100 may be coupled to the upper filter 201. As a result, as a fuel outside the filter 200 passes and is introduced into the filter 200, a foreign material is filtered out, and the fuel flows along a space which is formed in the filter 200 and in which the fuel may flow, such that the fuel may be introduced into the inlet of the fuel pump connected to the communicating pipe 100 through the flow path formed in the communicating pipe 100.
The rib 300 may be disposed in the filter 200. The rib 300 may include a fastening portion and may be coupled and fixed to the coupling portion formed at the lower end portion of the communicating pipe 100. Here, there may be a variety of structures and methods by which the rib 300 and the communicating pipe 100 are coupled to each other. Further, in the rib 300, a skeleton frame 301 may be formed along the space in the filter 200, and a plurality of support protrusions 302 may protrude from the frame 301.
As a result, the upper filter 201 and the lower filter 202 may be maintained to be spaced apart from each other without coming into contact with each other even when the upper filter 201 and the lower filter 202 are pressed toward each other due to a fuel pressure or external force. Therefore, it is possible to prevent the space in which the fuel flows in the filter 200 from being blocked. Further, the rib 300 may be formed of a flexible material that is bendable, and may be formed of a material having plasticity enough to maintain a deformed shape of the rib 300 to some degree after bending the rib 300.
Here, the filter 200 may include a first filtering portion 210 extending in a length direction with respect to the communicating pipe 100, a connecting portion 230 extending in a width direction at an edge of the first filtering portion 210 in the width direction, and a second filtering portion 220 extending in the length direction at the connecting portion 230 and spaced apart from the first filtering portion 210 in the width direction.
In other words, the filter 200 is H-shapes as illustrated, and a portion extending toward opposite outer sides in the length direction with respect to the communicating pipe 100 and including a portion to which the communicating pipe 100 is coupled may serve as the first filtering portion 210. Further, a portion extending in the width direction at the edge of the first filtering portion 210 in the width direction may serve as the connecting portion 230. A portion that extends toward opposite outer sides in the length direction at the connecting portion 230, is aligned with the first filtering portion 210, and is spaced apart from the first filtering portion 210 in the width direction may serve as the second filtering portion 220. Here, the first filtering portion 210, the connecting portion 230, and the second filtering portion 220 may be formed so that internal spaces are connected to and communicate with one another, and the integrally formed rib 300 may be disposed in the first filtering portion 210, the connecting portion 230, and the second filtering portion 220. In addition, the filter 200 may have various shapes such as an “H”-letter shape with a missing part, and a shape in which the connecting portions 230 extend from opposite sides of the first filtering portion 210 in the width direction, and the second filtering portions 220 extend from the connecting portions 230, respectively, in the length direction so that the second filtering portions 220 are formed on the opposite sides of the first filtering portions 210 in the width direction.
As illustrated in
As illustrated in
Further, a concave insertion groove 411 may be formed in the first coupling portion 410 along the width direction. The insertion groove 411 may have an inner width larger than a width of a slit formed in a surface of the first coupling portion 410 that faces the second coupling portion 420, and the insertion groove 411 may have one end or both ends open in the width direction. Further, the second coupling portion 420 may include a locking protrusion 421 having a shape corresponding to the insertion groove 411 of the first coupling portion 410, and the locking protrusion 421 may be inserted into the insertion groove 411 for the coupling. Here, the locking protrusion 421 of the second coupling portion 420 may be inserted along the insertion groove 411 of the first coupling portion 410 in the width direction, and may be prevented from coming out of the insertion groove 411 in the length direction after being inserted into the insertion groove 411 of the first coupling portion 410.
As illustrated in
Similarly to the first exemplary embodiment, in the strainer for a fuel pump according to the second exemplary embodiment of the present invention, the first filtering portion 210 and the second filtering portion 220 may have a bent shape, and a first coupling portion 410 and a second coupling portion 420 may be formed to couple and fix bent portions of the filter 200 to each other.
As illustrated in
As such, the strainer 1000 for a fuel pump according to the present invention may have a relatively large filtering area and a small size at the same time. Therefore, designing and installation of the strainer for a fuel pump may be easy even in a case where a size of a reservoir included in a fuel pump module is small.
The present invention is not limited to the abovementioned exemplary embodiments, but may be variously applied. In addition, the present invention may be variously modified by those skilled in the art to which the present invention pertains without departing from the gist of the present invention claimed in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0118086 | Sep 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
1058133 | Yourtree | Apr 1913 | A |
1394011 | Hills | Oct 1921 | A |
1568796 | Breer | Jan 1926 | A |
1677118 | Ford | Jul 1928 | A |
1773134 | Fisher | Aug 1930 | A |
2424211 | Webb | Jul 1947 | A |
2788125 | Webb | Apr 1957 | A |
2937755 | Szwargulski | May 1960 | A |
3023905 | McDougal | Mar 1962 | A |
3108065 | McMichael | Oct 1963 | A |
3294025 | Niemeyer | Dec 1966 | A |
3763840 | Schimmelpfenig | Oct 1973 | A |
3826372 | Bell | Jul 1974 | A |
3875059 | Maschino | Apr 1975 | A |
3900397 | Bell | Aug 1975 | A |
3910464 | Schlanzky | Oct 1975 | A |
4250039 | Cozzi | Feb 1981 | A |
4303513 | Lundquist | Dec 1981 | A |
4304664 | McAlindon | Dec 1981 | A |
4312753 | Bell | Jan 1982 | A |
4358372 | Lundquist | Nov 1982 | A |
4420396 | Yamamoto | Dec 1983 | A |
4546750 | Brunell | Oct 1985 | A |
4569637 | Tuckey | Feb 1986 | A |
4617121 | Yokoyama | Oct 1986 | A |
4618422 | Sasaki | Oct 1986 | A |
4743370 | Mizusawa | May 1988 | A |
4783260 | Kurihara | Nov 1988 | A |
4790185 | Fedelem | Dec 1988 | A |
4804466 | Cooper | Feb 1989 | A |
4851118 | Kurihara | Jul 1989 | A |
4853123 | Hayes | Aug 1989 | A |
4874510 | Akira | Oct 1989 | A |
4961850 | Combest | Oct 1990 | A |
4966522 | Koyama | Oct 1990 | A |
5049267 | Sasaki | Sep 1991 | A |
5049271 | Cain | Sep 1991 | A |
5055187 | Ito | Oct 1991 | A |
5111844 | Emmert | May 1992 | A |
5120434 | Yoshida | Jun 1992 | A |
5146901 | Jones | Sep 1992 | A |
5169531 | Shiraga | Dec 1992 | A |
5174841 | Combest | Dec 1992 | A |
5186152 | Cortochiato | Feb 1993 | A |
5263458 | Fujino | Nov 1993 | A |
5341842 | Chih | Aug 1994 | A |
5375629 | Wilson | Dec 1994 | A |
5395520 | Ito | Mar 1995 | A |
5398659 | Zimmerman | Mar 1995 | A |
5409608 | Yoshida | Apr 1995 | A |
5415146 | Tuckey | May 1995 | A |
5431143 | Brown | Jul 1995 | A |
5511957 | Tuckey | Apr 1996 | A |
5547568 | Sasaki | Aug 1996 | A |
5582729 | Shioda | Dec 1996 | A |
5584988 | Hashimoto | Dec 1996 | A |
5607578 | Ohkouchi | Mar 1997 | A |
5613476 | Oi | Mar 1997 | A |
5639367 | Ohzeki | Jun 1997 | A |
5647329 | Bucci | Jul 1997 | A |
5649514 | Okada | Jul 1997 | A |
5665229 | Fitzpatrick | Sep 1997 | A |
5702237 | Hill | Dec 1997 | A |
5716522 | Chilton | Feb 1998 | A |
5728292 | Hashimoto | Mar 1998 | A |
5776341 | Barnard | Jul 1998 | A |
5778926 | Tanaka | Jul 1998 | A |
5782223 | Yamashita | Jul 1998 | A |
5785032 | Yamashita | Jul 1998 | A |
5787865 | Harris | Aug 1998 | A |
5795468 | Reising | Aug 1998 | A |
5809975 | Tuckey | Sep 1998 | A |
5900140 | Nagai | May 1999 | A |
5900148 | Izutani | May 1999 | A |
5902480 | Chilton | May 1999 | A |
5928507 | Chiga | Jul 1999 | A |
6098600 | Umetsu | Aug 2000 | A |
6109299 | Hashimoto | Aug 2000 | A |
6123511 | Sertier | Sep 2000 | A |
6123521 | Mori | Sep 2000 | A |
6156201 | Ueda | Dec 2000 | A |
6176260 | Hahner | Jan 2001 | B1 |
6220454 | Chilton | Apr 2001 | B1 |
6241883 | Noda | Jun 2001 | B1 |
6260542 | Kochsmeier | Jul 2001 | B1 |
6283731 | Yoshioka | Sep 2001 | B1 |
6293770 | Matsumoto | Sep 2001 | B1 |
6308733 | Murakoshi | Oct 2001 | B2 |
6343589 | Talaski | Feb 2002 | B1 |
6361691 | Dockery | Mar 2002 | B1 |
6378504 | Horiuchi | Apr 2002 | B1 |
6382190 | Tanabe | May 2002 | B1 |
6412517 | Flambert | Jul 2002 | B1 |
6451205 | McGaw, Jr. | Sep 2002 | B1 |
6464872 | Honda | Oct 2002 | B1 |
6471072 | Rickie | Oct 2002 | B1 |
6471863 | Kojima | Oct 2002 | B2 |
6551509 | Appleton | Apr 2003 | B2 |
6575309 | Chiga | Jun 2003 | B1 |
6582599 | Ito | Jun 2003 | B2 |
6613227 | Rickie | Sep 2003 | B2 |
6638423 | Dockery | Oct 2003 | B2 |
6736273 | Chiga | May 2004 | B2 |
6739354 | Oku | May 2004 | B2 |
6743355 | Roth | Jun 2004 | B2 |
6821422 | Brzozowski | Nov 2004 | B1 |
6830687 | Dockery | Dec 2004 | B2 |
6833070 | Fischer | Dec 2004 | B2 |
6863814 | Okabe | Mar 2005 | B2 |
6913693 | Unuki | Jul 2005 | B2 |
6936168 | Dockery | Aug 2005 | B2 |
6951208 | Milton | Oct 2005 | B2 |
6964265 | Iwamoto | Nov 2005 | B2 |
6998043 | Fischer | Feb 2006 | B2 |
7007677 | Toki | Mar 2006 | B2 |
7029582 | Sato | Apr 2006 | B2 |
7077109 | Lee | Jul 2006 | B2 |
7083722 | McGaw, Jr. | Aug 2006 | B2 |
7112278 | Yamada | Sep 2006 | B2 |
7117854 | Schmitt | Oct 2006 | B2 |
7182869 | Catlin | Feb 2007 | B2 |
7191767 | Schmitt | Mar 2007 | B2 |
7198035 | Kadler | Apr 2007 | B2 |
7207320 | Ikeya | Apr 2007 | B2 |
7228848 | Rangel | Jun 2007 | B1 |
7279095 | Usui | Oct 2007 | B2 |
7306715 | Kato | Dec 2007 | B2 |
7387111 | Yu | Jun 2008 | B2 |
7407057 | Vichinsky | Aug 2008 | B2 |
7429322 | Fujita | Sep 2008 | B2 |
7478729 | Sato | Jan 2009 | B2 |
7513243 | Nakagawa | Apr 2009 | B2 |
7546833 | Tomomatsu | Jun 2009 | B2 |
7628143 | Yamada | Dec 2009 | B2 |
7857143 | Oku | Dec 2010 | B2 |
7901572 | Sato | Mar 2011 | B2 |
7927400 | Graber | Apr 2011 | B2 |
7964096 | Kimisawa | Jun 2011 | B2 |
7976712 | Rocheux | Jul 2011 | B2 |
8052868 | Sato | Nov 2011 | B2 |
8080086 | Graber | Dec 2011 | B2 |
8137546 | Ogose | Mar 2012 | B2 |
8173013 | Sato | May 2012 | B2 |
8246819 | Sakata | Aug 2012 | B2 |
D667923 | Ueki | Sep 2012 | S |
8372278 | Nguyen | Feb 2013 | B1 |
8453622 | Iwaoka | Jun 2013 | B2 |
8460542 | Oku | Jun 2013 | B2 |
8524091 | Rocheux | Sep 2013 | B2 |
8715497 | Schnipke | May 2014 | B2 |
8728308 | Schnipke | May 2014 | B2 |
8936008 | Powell | Jan 2015 | B2 |
9080537 | Choi | Jul 2015 | B2 |
9132366 | Ueki | Sep 2015 | B2 |
9151257 | Jeon | Oct 2015 | B2 |
9194343 | Thienel | Nov 2015 | B2 |
9248390 | Hudgens | Feb 2016 | B2 |
9421483 | Goll | Aug 2016 | B2 |
9441586 | Akagi | Sep 2016 | B2 |
9470193 | Ries | Oct 2016 | B2 |
9486725 | Ries | Nov 2016 | B2 |
9555353 | Graber | Jan 2017 | B2 |
9567955 | Akagi | Feb 2017 | B2 |
9816470 | Nishio | Nov 2017 | B2 |
9937448 | Yost | Apr 2018 | B2 |
9957931 | Kobayashi | May 2018 | B2 |
9962636 | Hibi | May 2018 | B2 |
10024283 | Ishitoya | Jul 2018 | B2 |
10029561 | Tipton | Jul 2018 | B2 |
10145341 | Kim | Dec 2018 | B2 |
10190554 | Ishimitsu | Jan 2019 | B2 |
10267276 | Nishio | Apr 2019 | B2 |
10328366 | Hudgens | Jun 2019 | B2 |
10391860 | Tipton | Aug 2019 | B2 |
10436161 | Kim | Oct 2019 | B2 |
10463999 | Washington | Nov 2019 | B2 |
10590894 | Hayashi | Mar 2020 | B2 |
10744428 | Wyhler | Aug 2020 | B2 |
10753329 | Hayashi | Aug 2020 | B2 |
10794343 | Hayashi | Oct 2020 | B2 |
11014446 | Tipton | May 2021 | B2 |
11073118 | Ito | Jul 2021 | B2 |
11168655 | Niwa | Nov 2021 | B2 |
20020017485 | Ito | Feb 2002 | A1 |
20020023418 | Kojima | Feb 2002 | A1 |
20020100717 | Ueda | Aug 2002 | A1 |
20020121473 | Boast | Sep 2002 | A1 |
20020153300 | Appleton | Oct 2002 | A1 |
20030010692 | Sato | Jan 2003 | A1 |
20030042185 | Dockery | Mar 2003 | A1 |
20030080046 | Ito | May 2003 | A1 |
20030111060 | Ito | Jun 2003 | A1 |
20030132156 | Rickie | Jul 2003 | A1 |
20040000516 | Okabe | Jan 2004 | A1 |
20040020839 | Kato | Feb 2004 | A1 |
20040037713 | Schelhas | Feb 2004 | A1 |
20040045884 | Roth | Mar 2004 | A1 |
20040129626 | Fischer | Jul 2004 | A1 |
20040140257 | Dockery | Jul 2004 | A1 |
20040144705 | Yamada | Jul 2004 | A1 |
20040168971 | Sato | Sep 2004 | A1 |
20040222143 | Kojima | Nov 2004 | A1 |
20040251194 | Brzozowski | Dec 2004 | A1 |
20050006300 | Sato | Jan 2005 | A1 |
20050023201 | Sato | Feb 2005 | A1 |
20050029173 | Kimisawa | Feb 2005 | A1 |
20050029180 | Kimisawa | Feb 2005 | A1 |
20050061723 | Matsushita | Mar 2005 | A1 |
20050087178 | Milton | Apr 2005 | A1 |
20050087485 | Takahashi | Apr 2005 | A1 |
20050098489 | Fischer | May 2005 | A1 |
20050115887 | Dockery | Jun 2005 | A1 |
20050150826 | Sato | Jul 2005 | A1 |
20050173329 | Iwamoto | Aug 2005 | A1 |
20050236321 | Usui | Oct 2005 | A1 |
20050274361 | Ikeya | Dec 2005 | A1 |
20050286103 | Yu | Dec 2005 | A1 |
20060070941 | Cline | Apr 2006 | A1 |
20060076287 | Catlin | Apr 2006 | A1 |
20060138035 | Izutani | Jun 2006 | A1 |
20060180535 | Yu | Aug 2006 | A1 |
20060266693 | Yoshida | Nov 2006 | A1 |
20060266701 | Dickerson | Nov 2006 | A1 |
20070095733 | Pizzo | May 2007 | A1 |
20070181102 | Hazama | Aug 2007 | A1 |
20070199546 | Tomomatsu | Aug 2007 | A1 |
20070199884 | Nakagawa | Aug 2007 | A1 |
20070215122 | Nakagawa | Sep 2007 | A1 |
20070246420 | Sato | Oct 2007 | A1 |
20080169033 | Tipton | Jul 2008 | A1 |
20080185331 | Sato | Aug 2008 | A1 |
20080245724 | Oku | Oct 2008 | A1 |
20080290013 | Stausberg | Nov 2008 | A1 |
20090000844 | Castillo | Jan 2009 | A1 |
20090025690 | Yamada | Jan 2009 | A1 |
20090039011 | Sato | Feb 2009 | A1 |
20090050551 | Kimisawa | Feb 2009 | A1 |
20090120858 | Kojima | May 2009 | A1 |
20090250410 | Khalil | Oct 2009 | A1 |
20090321347 | Ogose | Dec 2009 | A1 |
20100072120 | Sato | Mar 2010 | A1 |
20100206793 | Oku | Aug 2010 | A1 |
20100206802 | Sato | Aug 2010 | A1 |
20100294464 | Graber | Nov 2010 | A1 |
20100307615 | Takahashi | Dec 2010 | A1 |
20110132825 | Nishio | Jun 2011 | A1 |
20110139278 | Kawajiri | Jun 2011 | A1 |
20110155658 | Graber | Jun 2011 | A1 |
20110180469 | Sato | Jul 2011 | A1 |
20110192774 | Ogose | Aug 2011 | A1 |
20110192786 | Nagai | Aug 2011 | A1 |
20110233122 | Choi | Sep 2011 | A1 |
20120175297 | Schnipke | Jul 2012 | A1 |
20120240901 | Yamada | Sep 2012 | A1 |
20120248021 | Schnipke | Oct 2012 | A1 |
20130061960 | Jeon | Mar 2013 | A1 |
20130098339 | Yoon | Apr 2013 | A1 |
20130161249 | Kwon | Jun 2013 | A1 |
20130206663 | Ito | Aug 2013 | A1 |
20130233285 | Yamada | Sep 2013 | A1 |
20140096849 | Akagi | Apr 2014 | A1 |
20140158606 | Goll | Jun 2014 | A1 |
20140202951 | Graber | Jul 2014 | A1 |
20140345719 | Kim | Nov 2014 | A1 |
20150060349 | Ishitoya | Mar 2015 | A1 |
20150198071 | Hudgens | Jul 2015 | A1 |
20160108872 | Akagi | Apr 2016 | A1 |
20160115919 | Nishio | Apr 2016 | A1 |
20170138323 | Kobayashi | May 2017 | A1 |
20170254303 | Takahashi | Sep 2017 | A1 |
20170304749 | Niwa | Oct 2017 | A1 |
20180163679 | Niwa | Jun 2018 | A1 |
20180209386 | Hayashi | Jul 2018 | A1 |
20180257006 | Hayashi | Sep 2018 | A1 |
20180347526 | Ito | Dec 2018 | A1 |
20190010905 | Hayashi | Jan 2019 | A1 |
20190022563 | Kobayashi | Jan 2019 | A1 |
20190063383 | Kim | Feb 2019 | A1 |
20200088145 | Villaire | Mar 2020 | A1 |
20210086114 | Kim | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
101075796 | Oct 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20210086114 A1 | Mar 2021 | US |