Strand Guide Roller

Information

  • Patent Application
  • 20090165985
  • Publication Number
    20090165985
  • Date Filed
    March 30, 2007
    17 years ago
  • Date Published
    July 02, 2009
    15 years ago
Abstract
The invention relates to a strand guide roller 100 of a strand guide device for guiding a cast strand 200. The stand guide roller includes at least one first and one second sectional roller arranged next to each other, wherein the first sectional roller 110-1 has a roller journal 112-1 at its end surface adjacent to the second sectional roller. In addition, the strand guide roller includes a middle bearing 120-1, 120-2 between both sectional rollers 110-1, 110-2 for receiving and supporting the roller journal 112-1 of the first sectional roller. In order to improve strand guidance by increasing the bearing surface for the strand 200, it is suggested, according to the invention, that the first and second sectional rollers be connected with each other outside of the middle bearing by a plug-in connection. Then, according to the invention, the middle bearing is formed simply as unsplit separate bearing with an essentially smaller window width in comparison with a split bearing.
Description

The invention relates to strand guide rollers of a strand guide device for guiding a cast strand e.g., a slab after it leaves a strand casting mold.


Publications WO 2004/094087 and WO 2005/016578 describe the state of the art with respect to strand guide devices with strand guide rollers. In all of the strand guide rollers, which are disclosed in these publications, all of the separate components, such as roller bodies or rotation-preventing elements in form, e.g., of plain keys, should be stringed on a common central shaft; therefore, the assembly and an eventual disassembly of such strand guide roller are very expensive and require use of special tools. In addition, it is very difficult to realize an inner cooling of the rollers.


State-of-the art with regard to strand guide rollers which are divided once or multiple times, is disclosed in U.S. Pat. No. 5,279,535. Such strand guide roller includes several sectional rollers arranged axially next to each other, with each sectional roller having two roller journals at its both ends, respectively. The two roller journals, of two arranged next to each other sectional rollers, which extend in opposite directions, are received in their respective axial bearings that typically are combined in a split middle bearing.


Optionally, though this is not shown in U.S. Pat. No. 5,279,535, such a middle bearing can have, between the oppositely extending roller journals, additionally, a curved-tooth gear coupling for transmission of a torque between both adjacent sectional rollers.


Such split middle bearings in form of two separate, arranged next to each other, bearings with an optional curved-tooth gear coupling therebetween, are disadvantageously rather wide and, therefore, form a particular wide bearing window in which a to-be-guided and to-be-supported strand is not supported by the sectional rollers. Moreover, such middle bearings, because they are formed of a plurality of separate parts, are rather expensive.


Proceeding from this state-of-the art, the object of the invention is to provide a strand guide roller that can be at least simply split and provide an improved strand guidance.


This object is achieved by the subject matter of claim 1. This subject matter is characterized in that between the second sectional roller and the roller journal of the first sectional roller, a plug-in connection is formed for plug-in connecting the first and the second sectional rollers with each other, and that the middle bearing is formed as an unsplit single bearing.


The middle bearing serves for supporting the first sectional roller, receiving its roller journal. To this end, the middle bearing should be formed as an unsplit single bearing. By the plug-in connection, the second sectional roller is so connected with the first sectional roller that the second sectional roller can be supported on the first sectional roller. Because of the plug-in connection with the first sectional roller, the second sectional roller does not need any separate bearing, rather the second sectional roller is supported by the plug-in connection means in or on the first sectional roller. Therefore, with the inventive strand guide roller, a conventional, in the state-of-the art, second bearing in the middle bearing for the second sectional roller as well as the curved-tooth gear coupling can be dispensed with. Because the middle bearing can have only one separate bearing, the width of the middle bearing and, therefore, the window width between both adjacent sectional rollers can be reduced in comparison with the state-of-the-art. The advantage of this consists in that the bearing surface for the slab is increased, whereby the guiding and support function of the strand guide roller for the slab is improved.


It is advantageous when the middle bearing is formed as a separate bearing in form of a standard bearing, which makes it more cost-effective than a split bearing. In addition, with the inventive strand guide roller, the sectional rollers are easily mounted and dismounted.


According to one embodiment, the plug-in connection can be so formed that a roller journal of one sectional roller is inserted in a recess of an adjacent sectional roller. Then, the plug-in connection means is not formed as an additional component, e.g., as a separate coupling, the advantage consists in that the costs of such component are eliminated.


The formation of the cross-section of the roller journal and the cross-section of the associated recess in form of polygons provides an advantage in that both adjacent sectional rollers are connected with each other form-and forcelockingly for transmission of a torque. The transmission of a torque between sectional rollers is important, in particular with sectional rollers non-driven by a motor. In this case, the form-and forcelocking plug-in connection provides an advantage that consists in that when one sectional roller starts to rotate upon a contact with a transported slab, the adjacent sectional rollers rotate therewith even when they do not have any contact with the slab. The advantage of this consists in that the excessive heating and, thereby, warping and wedging of the sectional rollers is prevented.


The recess is subjected to very high loads, in particular when it is formed as a polygon for transmission of a torque and, therefore, can quickly wear out, with the corners and flanks being rounded during the operation, so that the transmission of a torque is not sufficient or is not at all possible. Therefore, it is advantageous when the recess is not formed directly in the end surface of a sectional roller but instead is defined and limited by an annular insert member insertable in a bore in the end surface of a sectional roller. The advantage of the insert member consists in that it, as a wear-out part, can be economically replaced. An alternative renewing of the recess directly in the end surface of the sectional roller is, in comparison, noticeably more expensive.


The provision of the cooling channel in the sectional rollers has the advantage in that they would not overheat; the amount of a possible cooling can be influenced by the number of channels. When the cooling channel has an inner tube the outer diameter of which is smaller than the inner diameter of the cooling channel, the inner tube forms a first cooling conduit, and the intermediate space between the inner tube and the cooling channel forms the second cooling conduit. In the first and second cooling channels, the cooling medium can flow in opposite directions. The invention relates to both driven and non-driven strand guide rollers.


Further advantageous embodiments of the strand guide roller form the subject matter of dependent claims.





The description is accompanied by five Figures, wherein:



FIG. 1 is a first embodiment of the inventive strand guide roller;



FIG. 2 is a cross-section of the strand guide roller according to the first embodiment;



FIG. 3 is a second embodiment of the inventive strand guide roller;



FIG. 4 is a cross-section of the strand guide roller according to the second embodiment; and



FIG. 5 a cross-section of a detail of the strand guide roller according to the second embodiment.





The invention will be described in detail below with reference to embodiments shown in the above-mentioned drawings. In the drawings, the same components are designated with the same reference numerals.



FIG. 1 shows a first embodiment of the inventive strand guide roller 100. The strand guide roller, e.g., is twice divided and includes correspondingly three sectional rollers 110-1, 110-2, 110-3 altogether. The second division is represented by two middle bearings 120-1, 120-2 which are arranged in the transition regions between respective two sectional rollers. The middle bearings insure an axial alignment of the sectional rollers. The first sectional roller 110-1 is supported by a first middle bearing 120-1 and an outer bearing 120-0, with the both bearings receiving, respectively, roller journals 112-1, 112-0 of the first sectional roller 110-1.


The second sectional roller 110-2 is not directly supported by the middle bearing 120-1. Instead, it has, at its end side 114-2 adjacent to the first sectional roller 110-1, a recess 116-2 for receiving the roller journal 112-1 or its projection pivoted relative to the roller journal proper.



FIG. 2 shows that the recess 116-2 is formed or shaped in accordance with the cross-section of the roller journal 112-1 or of its projection. In an assembled condition, as shown in FIG. 1, the first and second sectional roller 110-1, 110-2 are so connected that the roller journal 112-1 is precisely inserted in the correspondingly formed recess 116-2. The roller journal 112-1 and the recess 116-2 form in this way a plug-in connection for both sectional rollers. A second bearing for receiving and supporting the second sectional roller 110-2 is, therefore, unnecessary in the inventive embodiment of the strand guide roller. Therefore, the middle bearings 120-1, 120-2 can be formed as unsplit single bearings, the advantage of which consists in that they have a noticeably smaller window width B.


Naturally, alternatively to the embodiment shown in FIG. 1, other embodiments of the plug-in connection are conceivable. It is alternatively conceivable that the second sectional roller 110-2 has, on its end side 114-2 adjacent to the first sectional roller 110-1, no recess but rather also a roller journal having a diameter smaller than the diameter of the roller journal 112-1 of the first sectional roller 110-1. The plug-in connection can be realized in this case so that the roller journal of the second sectional roller is inserted in a recess in the end surface of the roller journal 112-1 of the first sectional roller. It is also conceivable, naturally, to form the plug-in connection in form of separate components provided between the two sectional rollers 110-1, 110-2 outside of the middle bearing 120-1.


The plug-in connection can be formed, with the inventive strand guide roller, as a coupling for transmission of a torque or be simply formed as a pivot bearing which does not provide for transmission of any torque. For the reasons mentioned above in the general portion of the description, a formation as a coupling makes sense also with the strand guide roller 110 which is not externally driven by a drive 150 (see FIG. 3). With the above-described embodiment in which a roller journal in inserted in a recess, a coupling function can be easily realized by forming the recess not as a circular one but rather, e.g., in form of a polygon. An example of this is shown in FIG. 2.



FIG. 3 shows a second embodiment of the inventive strand guide roller that differs from the first embodiment by the design of the plug-in connection. FIG. 4 shows this embodiment of the plug-in connection at an increased scale, therefore, it would be described in detail below with reference to FIG. 4. In the plug-in connection shown in FIG. 4, the recess 116-2 in the second sectional roller 110-2 and the roller journal 112-1 of the first sectional roller 110-1 are not exactly adapted to each other, rather the cross-section of the roller journal 112-1 or of its projection is substantially smaller than the cross-section of the recess 116-2. In addition, the recess 116-2 advantageously is not limited, for simplicity reasons, to a polygonal cross-section, even when the plug-in connection is formed as a coupling, but rather is formed as a simple bore. Into this bore, a preferably annular insert member 130 is inserted and which is secured there against rotation with locking pins 132. The insert member 130 itself has a recess 134 that is precisely adapted to the cross-sectional of the roller journal 112-1 or its projection 113-1 when the recess 134 is formed circular, no torque is transmitted between the two sectional rollers 110-1, 110-2, when it is formed, however, as a polygon, in particular, e.g., as a square, as shown in FIG. 5, then with a corresponding cross-section of the roller journal 112-1 or 113-1, a torque is transmitted. The annular insert member 130 is subjected to very large loads in the region of the recess 134 during transmission of the torque, and that is why it wears out very strongly in the transition region between the projection 113-1 and the recess. Fortunately, the annular insert member as a wear-out part can be simply and economically replaced.


In FIGS. 1-5, a central axial cooling channel in the strand guide roller 100 is shown, which also extends through the sectional rollers. FIG. 4 shows that an inner tube 142, the outer diameter of which is smaller than the inner diameter of the cooling channel 140, can be inserted in the cooling channel 140. This provides a possibility to transport cooling medium in the inner tube 142 in one direction and to transport the cooling medium in the space between the inner tube and the wall of the cooling channel 140, e.g., in the opposite direction. When a large cooling capacity is necessary, several cooling channel parallel to the axis in form, e.g., of a revolver barrel can be formed in separate sectional rollers. These cooling channels can be, as desired, sealed or not sealed against each other in separate sectional rollers.

Claims
  • 1-9. (canceled)
  • 10. A strand guide roller (100) of a strand guide device for guiding a cast strand (200), e.g., a slab, comprising: at least one first and one second sectional roller (110-1, 110-2) arranged next to each other, wherein the first sectional roller (110-1) has a roller journal (112-1) on its end surface adjacent to the second sectional roller (110-2); andat least one middle bearing (120-1, 120-2) in form of an unsplit single bearing between both sectional rollers (110-1, 110-2) for receiving and supporting the roller journal (112-1) of the first sectional roller;wherein between the second sectional roller (110-2) and the roller journal (112-1) of the first sectional roller (110-1), a plug-in connection is formed for plug-in connecting the first and the second sectional roller with each other, and wherein the plug-in connection is so formed that the second sectional roller (110-2) has, in an surface (114-2) thereof adjacent to the first sectional roller (110-1), a bore with an insert member (130) inserted therein and in the center of which a recess, which is adapted for receiving the roller journal of the first sectional roller is formed,characterized in thata cross-section of the roller journal (112-1) and the cross-section of associated recess are formed as a polygon, respectively; andthe insert member (130) is secured in the bore against rotation with locking pins (132).
  • 11. A strand guide roller (100) according to claim 10, characterized in thatan axial and/or extending parallel to the axis, cooling channel (140) extends through both sectional rollers (110-1, 110-2) for conducting a cooling medium.
  • 12. A strand guide roller (100) according to claim 11, characterized in thatan inner tube (142), an outer diameter of which is smaller than an inner diameter of the cooling channel (140), extends in the cooling channel (140).
  • 13. A strand guide roller (100) according to claim 10, characterized in thatboth adjacent sectional rollers (110-1, 110-2) have, respectively, a separate cooling wherein both sectional rollers are sealed against each other in the region of the middle bearing (120).
  • 14. A strand guide roller (100) according to claim 10, characterized bya drive (150) for driving the strand guide roller (100).
Priority Claims (2)
Number Date Country Kind
102006019147.1 Apr 2006 DE national
102006040011.9 Aug 2006 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/002859 3/30/2007 WO 00 10/17/2008