The present invention relates to fasteners for minimizing undesirable movement of adjustable garment straps, such as bra straps.
Brassieres, commonly known as bras, are undergarments typically worn by women under clothing to provide support to their breasts. Bras are designed to be form fitting around the chest of a wearer, and usually include a chest band that wraps around the wearer's torso, two cups that hold the breasts, and two straps that extend from the cups, over the wearer's shoulder, and attach to the back of the chest band. Bra manufacturers often size bras to fit prototypical women of a certain chest circumference and cup size, and assume that both breasts are equally sized and positioned.
Unfortunately, most women are not shaped like the prototypical women that the bras are designed to fit. In addition to varying chest sizes, women's breasts vary in volume, width, height, composition, shape, and position on the chest. As such, bras are often manufactured with adjustable straps that allow women to tailor the fit of the bra to meet their unique measurements.
Beyond fit, adjustable straps allow women to personalize the bra to meet other personal wants and needs, such as the amount of support, the amount of lift, the amount of cleavage, and the amount of restraint. While adjustable straps do have the stated advantages, the sliders of the adjustable straps often move during use, which causes unintentional and undesirable adjustment of one or both straps—to the annoyance of wearer. Thus, often women have to continually readjust their straps to maintain the fit and other desired features (i.e. lift, support, etc.). The sliders also tend to move during wash, requiring the wearers to re-adjust the sliders/straps after each wash in an effort to recreate their desired fit.
The present invention provides fasteners that minimize undesirable and unintentional movement of an adjustable bra strap or other adjustable garment strap. By preventing adjustment of bra straps, fasteners of the invention advantageously maintain the wearer's desired fit of the bra. According to certain aspects, a fastener of the invention has a clamshell configuration designed to encompass an adjustable portion of a bra strap in order to prevent movement of the bra strap. Particularly, bra fasteners of the invention minimize or prevent movement of a slider that controls the adjustment of a bra strap.
According to certain embodiments, a fastener of the invention is convertible from a closed configuration, in which the fastener encompasses an adjustable portion of a bra strap, and an open configuration, in which the fastener is removable from the bra strap. In such aspects, the fastener includes a first plate and a second plate coupled together by a joint. The plates may be shaped like discs. The first plate includes an inner surface, a clasp member, and a plurality of protrusions on the inner surface. The second plate is coupled to the first plate and includes an inner surface and a clasp member. The fastener, when in the closed configuration, is configured such that the inner surface of the first plate is separated from and faces the inner surface of the second plate and that the clasp members of the plates couple to each other. The fastener, when in the open configuration, is configured such that the first clasp member is separated from the second clasp member by a distance. This allows the bra strap to be removed from the fastener.
When in the closed configuration, the protrusions of the first plate compress against the bra strap to inhibit movement of the bra strap. In addition to the first plate's protrusions, the second plate may also have protrusions. In some embodiments, the protrusions are a plurality of tines. The protrusions may be coupled to the inner surfaces of the first or second plates, or the protrusions may be formed by cutting the material of the first or second plates.
The joint coupling the first plate and the second plate together allows the fastener to transition from the closed configuration to the open configuration. In certain embodiments, the joint causes the first and second plates to swivel when transitioning from the open to closed configurations. Any joint is suitable for use in fasteners of the invention. Preferably, the joint used automatically reverts the fastener to a resting or normal position. For example, the joint may be formed from a spring-steel or shape memory polymer. In some embodiments, the joint may be a hinge. Suitable hinges include butt hinges, butterfly hinges, flush hinges, and barrel hinges.
In some aspects, fasteners of the invention include a friction element on an outer surface of one or both plates. The friction element enhances the user's ability to open and close the fastener with their fingertips. The friction element may be an embellishment, e.g., for fashion purposes.
The present invention provides bra fasteners that minimize undesirable and unintentional movement of an adjustable bra strap or other adjustable garment strap. Particularly, bra fasteners of the invention minimize or prevent movement of a slider that controls adjustment of a bra strap. The slider frequently and unintentionally adjusts the bra strap because the slider has a tendency to move in response to a bra wearer's normal activity as well as gravity. According to certain aspects, a bra fastener of the invention has a clamshell configuration designed to encompass a portion of a bra strap in order to prevent movement of the bra strap. In certain embodiments, the bra fastener is positioned directly below the slider, thereby preventing movement of the slider and thus movement of the bra strap. Additionally, bra fasteners of the invention can be positioned on a portion of the bra strap prone to adjustment (such as the adjustable looped portion of the bra strap), and the snug fit and/or friction of the fastener will stop adjustment of the bra strap.
In addition to bras, fasteners of the invention may be used with other garments with adjustable straps, e.g., tank tops, bikinis, dresses, night gowns, camisoles, etc. As such, it is understood that the dimensions of the fasteners adapted to fit the adjustable straps of various garments and of various sizes.
The joint 102 allows a degree of rotation, swivel or other movement of the plates 104, 106 such that the plates 104, 106 can transition from the open configuration to the closed configuration. In some embodiments, the joint 102 extends from an outer edge of the plates 104, 106. Any joint 102 is suitable to couple and allow movement of the plates 104, 106. In preferred embodiments, the joint 102 automatically returns the fastener 100 to the closed configuration or returns substantially to the closed configuration after opening. In such embodiments, the joint 102 may be formed from a spring-steel or a shape-memory polymer. Preferably, the joint 102 is the spring-steel joint. A spring-steel joint ensures resilience, while also allowing the fastener to bend back to its original shape. In additional embodiments, the joint 102 is a hinge. Suitable hinges include, for example, a butt hinge, a butterfly hinge, a flush hinge, or a barrel hinge.
According to certain aspects, the fastener 100 is designed to form a tight or snug fit around a bra strap 2. That is, the internal space 200 of the fastener is substantially similar to a cross-section of the bra strap 2. In certain embodiments, the internal space 200, formed by the fastener 100 when in the closed configuration, has an internal width 116 and an internal height 114. In certain embodiments, the internal width 116 of the fastener 100 is less than ¼″, ⅜″, ½″, ⅝″, etc. In certain embodiments, the internal height 114 of the fastener 100 is less than 1/12″, 2/12″, 3/12″, ½″, etc. In further embodiments, the fastener 200 is configured such that the fastener is able to encompass the width of two or more straps. For example, the internal space 200 of the fastener is dimensioned to encompass a bra strap and a camisole strap at the same time. In another example, the fastener is dimensioned to encompass a strap that is folded over itself one or more times, as shown in
When the fastener 100 is in the closed configuration, the inner surface 116 of plate 104 faces the inner surface 118 of plate 106. When the fastener 100 is in use, the inner surfaces 116, 118 may rest against the strap 2 disposed therein. In certain embodiments, inner surface 116, inner surface 118, or both may include a surface element 112 configured to inhibit movement of the bra strap 2 when the fastener 100 is clamped onto the bra strap 2.
The surface element 112 may be anything that causes friction between the fastener 100 and the bra strap 2. In certain embodiments, the surface element 112 comprises one or more protrusions. The protrusions may be tines. In some embodiments, the surface element 112 is coupled to the plates 104, 106. Alternatively, the surface elements 112 may be formed from the materials of the plates 104, 106. For example, the plates 104, 106 may be cut and the cut portions of the plates 106, 104 may be elevated on the inner surfaces 118 to form the surface elements. The fasteners of
In certain embodiments, the surface elements 112 act to catch the material of the bra strap when the fastener 100 is clamped onto the strap. The fastener 100 with the surface element 112 is able to firmly grip onto the strap and minimize/prevent movement of the strap and the slider. Preferably, the surface elements 112 minimize movement without damaging the strap.
In certain embodiments, the fastener 100 may be formed from a unitary piece of material. The advantage of this is that the fastener 100 can be easily cut into the flat blank shown in
Unitary or multi-component fasteners of the invention may be formed using conventional techniques. The techniques may include laser cutting, mechanical cutting, 3D printing, stamping, filing, deburring, electroplating, tooling, etc.
In certain aspects, one or both of the outer surfaces of plates 104, 106 of the fastener 104 may include a friction element. The friction element is designed to ease a user's ability to close and open the fastener. In certain embodiments, the friction element may be a treatment applied to the outer surface, e.g., application of ridges, bumps, or the like. In other embodiments, the friction element may be an object adhered to the outer surfaces of the plates 104, 106. The object may be a decorative embellishment. In further embodiments and as shown in
According to particular aspects, at least one outer surface of the fastener includes an embellishment. For example, it is now common for some individuals to expose the bra straps and some garments (such as camisoles) are designed to have the adjustable straps shown. The embellishment may include any design such as those with flowers, plants, animals, letters, and numbers. The embellishment may include gems or be designed to look like jewelry, giving a higher quality and decorative appearance to the outfit. With embellishments, the fastener is fashionable while ensuring an uplifting and secure fit at the same time. The embellishment may be affixed to the outer surface or the embellishment may be removably coupled to the outer surface. Removable embellishments may be interchanged to fit the particular fashion of the wearer. In one embodiment, the outer surface includes a male mate-fit element that would mate with a female mate-fit element of an embellishment (e.g., via a snap-fit).
The fastener may be formed from a variety of materials, e.g. metals, plastics, combinations thereof. The fastener may be formed from metals and metal alloys, such as aluminum, stainless steel, gold, brass, silver, alloys thereof, combinations thereof, The fastener may include plastics or polymers, such as Polyethylene terephthalate (PET), Polyethylene (PE), High-density polyethylene (HDPE), Polyvinyl chloride (PVC), Polyvinylidene chloride (PVDC) Low-density polyethylene (LDPE), Polypropylene (PP), Polystyrene (PS), High impact polystyrene (HIPS), combinations thereof, etc. Preferably, the material allows for easy and inexpensive manufacture.
In preferred embodiments, the fastener is formed from a material that is machine washable. This allows the fastener to maintain the desired fit of the user after wash. As such, the user advantageously does not have to readjust the bar after every wash and reapply the fastener.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
1494680 | Fisk | May 1924 | A |
3214815 | Mathison | Nov 1965 | A |
4038726 | Takabayashi | Aug 1977 | A |
5212838 | Davidson et al. | May 1993 | A |
5608918 | Salvaggio | Mar 1997 | A |
5722260 | Mangano | Mar 1998 | A |
6108875 | Anscher | Aug 2000 | A |
6135852 | Young | Oct 2000 | A |
6684463 | Yang | Feb 2004 | B1 |
7140080 | Fildan | Nov 2006 | B2 |
7808386 | Sayegh | Oct 2010 | B1 |
8357025 | Brydon | Jan 2013 | B2 |
8984723 | Pitman | Mar 2015 | B2 |
20020010986 | Fildan | Jan 2002 | A1 |
20030115727 | Yokozeki et al. | Jun 2003 | A1 |
20050039243 | Henderson | Feb 2005 | A1 |
20060286901 | Cremer et al. | Dec 2006 | A1 |
20090126084 | Fenske | May 2009 | A1 |
20110269376 | Clim | Nov 2011 | A1 |
20120028539 | McCarty | Feb 2012 | A1 |
20120278974 | Lembo James et al. | Nov 2012 | A1 |
20120311831 | Berns et al. | Dec 2012 | A1 |
20130029561 | Lin | Jan 2013 | A1 |
20140349550 | Campbell | Nov 2014 | A1 |
20150074873 | Carleton | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2007091025 | Aug 2007 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority Mailed Mar. 8, 2016 for Application No. PCT/US2015/062268 (11 Pages). |
Number | Date | Country | |
---|---|---|---|
20160143380 A1 | May 2016 | US |